1. "Simulation of migration and coalescence of metal inclusions in homogeneous and isotropic media". C. Svaneborg, S. Steenstrup, and K.K. Bourdelle. Nucl. Inst. Meth. B 142, 89 (1998). DOI link

2. "A Monte Carlo study on the effect of excluded volume interactions on the scattering from block copolymer micelles". C. Svaneborg and J.S. Pedersen. J. Chem. Phys. 112, 9661 (2000).  DOI link

3. "Block Copolymer micelle coronas as quasi two-dimensional dilute or semi-dilute polymer solutions". C. Svaneborg and J.S. Pedersen. Phys. Rev. E (rapid comm.) 63, 10802 (2001). DOI link

4. "Form factors of block copolymer micelles with excluded volume interactions of the corona chains determined by Monte Carlo simulations". C. Svaneborg and J.S. Pedersen. Macromolecules 35, 1028-1037 (2002). DOI link

5. "Scattering from block copolymer micelles". J.S. Pedersen and C. Svaneborg. Curr. Opinion in Colloid and Interface Science 7, 158-166 (2002). DOI link

6. "A small-angle neutron and X-ray contrast variation scattering study of the structure of block copolymer micelles: Corona shape and excluded volume interactions". J.S. Pedersen, C. Svaneborg, K. Almdalm I.W. Hamley, and R.N. Young. Macromolecules 36, 416-433 (2003). DOI link

7. "Rheology and Microscopic Topology of Entangled Polymeric Liquids". R. Everaers, S.K. Sukumaran, G.S. Grest, C. Svaneborg, A. Sivasubramanian, and K. Kremer. Science 303, 823-826 (2004). DOI link

8. "Monte Carlo simulations and analysis of scattering from neutral and polyelectrolyte polymer and polymer-like systems". C. Svaneborg and J.S. Pedersen. Current Opinion in Colloid and Interface Science 8, 507-514 (2004). DOI link

9. "Strain-Dependent Localization, Microscopic Deformations, and Macroscopic Normal Tensions in Model Polymer Networks". C. Svaneborg, G.S. Grest, and R. Everaers. Phys. Rev. Lett. 93, 257801 (2004). DOI link

10. "Disorder effects on the strain response of model polymer networks". C. Svaneborg, G.S. Grest, and R. Everaers. Polymer 46, 4283, (2005). DOI link

11. "Scattering from polymer networks under elongational strain". C. Svaneborg, G.S. Grest, and R. Everaers. Europhysics Lett. 72, 760 (2005). DOI link

12. "Permanent Set of Crosslinking Networks: Comparison of Theory with Molecular Dynamics Simulations". D. R. Rottach, J. G. Curro, J. Budzien, G. S. Grest, C. Svaneborg and R. Everaers. Macromolecules 39, 5521-5530 (2006). DOI link

13. "Molecular Dynamics Simulations of Polymer Networks Undergoing Sequential Cross-Linking and Scission Reactions". D. R. Rottach, J. G. Curro, J. Budzien, G. S. Grest, C. Svaneborg and R. Everaers. Macromolecules 40, 131-139 (2007). DOI link

14. "Connectivity and Entanglement Stress Contributions in Strained Polymer Networks". C. Svaneborg, R. Everaers, G.S. Grest, and J.G. Curro. Macromolecules 41, 4920-4928 (2008). DOI link

15. "Microphase separation in cross-linked polymer blends: Efficient replica RPA post-processing of simulation data for homopolymer networks" A.V. Klopper, C. Svaneborg, and R. Everaers. Eur. Phys. J. E. 28, 89-96 (2009). DOI link

16. "Stress Relaxation in Entangled Polymer Melts". J.-X. Hou, C. Svaneborg, R. Everaers, and G.S. Grest. Phys. Rev. Lett. 105, 068301 (2010) DOI link

17. "A formalism for scattering of complex composite structures. I. Applications to branched structures of asymmetric sub-units". C. Svaneborg and J.S. Pedersen. J. Chem. Phys. 136, 104105 (2012) DOI link

18. ”LAMMPS Framework for Dynamic Bonding and an Application Modeling DNA”. C. Svaneborg. Computer Physics Communications 183, 1793 (2012).  DOI link

19. ”A formalism for scattering of complex composite structures 2. Distributed reference points”. C. Svaneborg and J.S. Pedersen. Journal of Chemical Physics 136, 154907 (2012). Also republished in Virtual Journal of Nanoscale Science and Technology (2012). DOI link

20. ''DNA Self-Assembly and Computation Studied with a Coarse-grained Dynamic Bonded Model'' C. Svaneborg, H. Fellermann, S. Rasmussen. Lecture Notes in Computer Science 7433, 123 (2012). Eds. D. Stafanovic and A. Tuberfield.  DOI link 

21. ”Multiscale approach to equilibrating model polymer melts” Carsten Svaneborg, Hossein Ali Karimi-Varzaneh, Nils Hojdis, Frank Fleck, and Ralf Everaers. Phys. Rev. E 94, 032502 (2016) DOI Link

22. ''Generating minimal living systems from non-living mterials and increasing their evolutaionary abilities'' S. Rasmussen, A. Constantinescu, C. Svaneborg. Phil. Trans. R. Soc. 371, 20150440 (2016). DOI link

23. ”Dynamics of dense hard sphere colloidal systems: A numerical analysis” Paolo Sibani, Carsten Svaneborg. Phys. Rev. E. 99, 042607 (2019). DOI link.


24. Effects of Graphite and Plasticizers on the Structure of Highly Entangled Polyisoprene MeltsG. Giunta, C. Svaneborg, H. A. Karimi-Varzaneh, P. Carbone. ACS Appl. Polym. Mater. (2019) Doi Link.


25. Characteristic Time and Length Scales in Melts of Kremer-Grest Bead Spring Polymers with Wormlike Bending StiffnessC. Svaneborg, R. Everaers. Macromolecules 53, 1917 (2020) Doi Link.


26. Kremer Grest Models for Commodity Polymer Melts: Linking Theory, Experiment, and Simulation at the Kuhn Scale.R. Everaers, H. A. Karimi-Varzaneh, F. Fleck, N. Hojdis, C. Svaneborg. Macromolecules 53, 1901 (2020) Doi Link.