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Chapter 1AbstratDiblok opolymers dissolved in a seletive solvent self-assemble into miellaraggregates. These aggregates onsists of a di�use orona of the dissolved bloksand a dense ore of the insoluble bloks. The orona sattering has been investi-gated using the Monte Carlo simulation tehnique. The orona was representedas a number of hains tethered to a spherial ore, hains interated throughexluded volume interations and they were exluded from the ore region. Theorona sattering of a mielle ontains information about single hain proper-ties, suh as the radius of gyration, as well as overall properties suh as theradial monomer pro�le. The orona sattering an be separated into two ontri-butions, one due to intra-hain and another due to inter-hain sattering. Theorona sattering an, furthermore, be regarded as being aused by an averageradial pro�le (as in a ore-shell model) and a sattering ontribution due todensity �utuation orrelations about this average radial density pro�le. These�utuations are aused by hain onnetivity and hain-hain interation e�etssuh as the "orrelation hole". The �utuation sattering arries informationabout the ompressibility of the orona.Simulations were performed systematially varying the number of hains inthe orona, the hain length, and ore radius orresponding to surfae overagesin the experimentally aessible regime for diblok opolymer mielles. Duringsimulations the partial sattering ontributions due to intra-hain and inter-hain sattering as well as the sattering due to the radial pro�le were sampled.Properties suh as the single-hain radius of gyration, hain enter-of-mass dis-tane to the ore, and the radial monomer pro�le were also sampled.The model of mielle sattering due to Pedersen and Gerstenberg [J.S. Ped-ersen and M.C. Gerstenberg, Maromoleules (1996), 29, p. 1363℄ neglets thee�ets of exluded volume interations. The validity of this model, whih anestimate the hain radius of gyration and enter-of-mass distane from the ore,was investigated using simulated sattering data. The onlusion was that themodel provides aurate estimates of for low surfae overages, but that theestimates get progressively worse as the surfae overage is inreased.Using a self-onsistent analysis of the simulation data it was shown thatthe orona sattering an be very aurately represented by a weighted averagebetween a ore-shell model and a Random Phase Approximation (RPA) expres-3



4 CHAPTER 1. ABSTRACTsion, where the ore-shell model represents the sattering ontribution due tothe radial pro�le, and the RPA expression desribes the �utuation satteringontribution. The RPA approximation depends on the intra-hain satteringand an exluded volume parameter proportional to the apparent seond virialoe�ient. The resulting expression is denoted solution pro�le sattering as ithas the interpretation of being the sattering from a two dimensional layer ofdilute/semi-dilute polymer solution on�ned in a shell around the mielle sur-fae with some radial density pro�le. The polymer solution an be regarded asbeing two dimensional sine the width of orona is omparable to the radius ofgyration of the orona hains.The forward sattering due to density �utuations an easily be obtainedin this approah, and this provides the osmoti ompressibility of the orona.The ompressibility obtained from the self-onsistent analysis shows an univer-sal dependene on the redued surfae overage, sine ompressibilities obtainedfrom simulations varying number of hains, hain length, or ore radius ollapseonto a ommon urve. The orresponding apparent seond virial oe�ient fol-lows an approximate power law as funtion of redued surfae overage. Theorona ompressibility shows a surfae overage dependene analogous to thatof a polymer solution as funtion of redued onentration =�. This validatesthat the miellar orona an be regarded as a quasi-two dimensional polymersolution.The solution pro�le sattering expression has also been used for �tting theMonte Carlo simulation data. The expression depends on the single hain radiusof gyration, an exluded volume oe�ient, and a radial pro�le of the orona.Exellent �ts were obtained within the entire range of experimentally availablesurfae overages using a Maximum Entropy estimate for the orona pro�le.The radius of gyration and the orona pro�le were estimated by the �ts, andthese were found to be in very good agreement with results obtained diretlyfrom the Monte Carlo simulation.A formalism for the form fator and struture fator of onneted aylipolymer strutures was developed based on a generalization of a diagrammatiinterpretation of the mielle sattering model due to Pedersen and Gerstenberg.Some examples of strutures desribed by this formalism inludes mielles withan arbitrary ore geometry, branhed polymers, and opolymer stars. The for-malism inlude exluded volume e�ets on the level of a linear hain, and anexpression for the form fator of a opolymer with exluded volume interationsis given. Expressions for the form fator of a triblok opolymer star with andwithout exluded volume interations have been derived using the formalism,and �tted to Monte Carlo simulations results for the sattering without exludedvolume for f = 2; 3; and 6 arms. Sattering was sampled for the entire star aswell as the individual bloks yielding sattering for four di�erent ontrasts intotal. The simulated sattering results with exluded volume interations for tri-blok opolymer stars with f = 2 arms have also been �tted. These �ts show anexellent agreement between the simulated sattering results and the theoretialform fator.



Chapter 2ResuméNår diblokopolymere opløses i et opløsningsmiddel, der er godt for den eneblok og dårlig for den anden blok, danner opolymerene en mielle beståendeaf en di�us korona af den opløste blok og en tæt kerne af den uopløselige blok.Koronaspredningen er blevet undersøgt med Monte Carlo simulationsteknikker.I simulationerne blev koronaen repræsenteret som et antal af kæder, der sidderfast på en kugleformet kerne. Kæderne vekselvirkede med �exluded volume�vekselvirkninger, og var udelukket fra kernen.Koronaspredningen fra en mielle indeholder information om enkeltkædeegenskaber så som kædernes gyrationsradius og radialfordelingen af monomerer.Koronaspredningen har to bidrag, et fra intrakæde og et fra interkæde spred-ning, dvs. spredning fra den enkelte kæde og spredning mellem kæder. Ko-ronaspredningen kan også opfattes som værende summen af to bidrag fra spred-ningen fra gennemsnits radialpro�len (en kerne-skal model) og fra korrelationeraf tætheds�uktuationer. Disse �uktuationer skyldes, at kæderne er sammen-hængende og kæde-kæde vekselvirkninger som for eksempel �korrelations hullet�.Fluktuationsspredningsbidraget indeholder information om koronaens kompres-sibilitet.Simulationer er blevet udført, hvor antallet af kæder, kædelængde og kerne-radius systematisk er blevet varieret svarende til de over�adetætheder, der kanopnås eksperimentelt for diblokopolymer mieller. Under simulationerne blevspredningsbidrag så som intrakæde- og interkædespredningen samt spredningenfra radial pro�len indsamlet. Egenskaber som enkeltkæde gyrationsradius, dengennemsnitlige afstand fra kædernes massemidtpunkt til kernen og radialpro�lenaf monomere blev også indsamlet.Modellen for miellespredningen, der er foreslået af Pedersen og Gersten-berg [J.S. Pedersen and M.C. Gerstenberg, Maromoleules (1996), 29, p. 1363℄,negligerer e�ekterne af exluded volume vekselvirkninger. Gyldigheden af dennemodel er blevet undersøgt ved hjælp af data fra simulationer. Konklusionen var,at for små over�adetætheder giver modellen præise estimater for enkeltkædegyrationsradius og kædernes massemidtpunkts afstand til kernen, men at esti-materne bliver dårligere, som over�adetætheden øges.Ved hjælp af en selvkonsistent analyse af simulationsdata blev det vist, atkoronaspredningen kan repræsenteres meget præist som et vægtet gennemsnit5



6 CHAPTER 2. RESUMÉmellem en kerne-skals model og et Random Phase Approximation (RPA) udtryk,hvor kerne-skals modellen repræsenterer spredningsbidraget fra koronaens pro-�l, mens RPA-udtrykket beskriver spredningsbidraget fra tætheds�uktuationer.RPA-udtrykket afhænger af intrakæde spredningen og af en exluded volumeparameter, der kan vises at være proportional med den anden virial koe�ient.Det resulterende udtryk kan fortolkes som spredningen fra et to-dimensionalt lagaf en �dilute/semi-dilute� polymeropløsning med en vis radialpro�l. Udtrykketkaldes derfor opløsningspro�lspredning. Polymeropløsningen kan opfattes somværende to-dimensional fordi koronaens tykkelse er sammenlignelig med korona-kædernes gyrationsradius.Den fremadrettede spredning fra tætheds�uktuationerne kan let udregnesmed opløsningspro�lsprednings udtrykket, og det giver den osmotiske kompres-sibilitet af miellens korona. Kompressibiliteten fra den selvkonsistente analysehar en universal afhængighed af den reduerede over�adetæthed fra simula-tioner, hvor antallet af kæder, kædelængde og kerneradius falder på den sammekurve. Korona kompressibiliteten har en over�adetæthedsafhængighed, der eranalog med konentrationsafhængigheden af =� for en polymeropløsning. Detteindikere at mielle koronaen kan opfattes som en kvasi-to-dimensional polymer-opløsning.Opløsningspro�ludtrykket er også blevet �ttet til Monte Carlo simulations-data. Udtrykket afhænger af enkeltkæde gyrationsradius, en exluded volumeparameter og et udtryk for koronaens radialpro�l. Ved hjælp af et MaximumEntropi estimat for koronaens radialpro�l er der opnået fortræ�elige �ts for allesimulationer. Fra disse �ts blev enkeltkæde gyrationsradius og koronaens radial-pro�l fundet, og disse er i meget god overensstemmelse med resultaterne, derblev indsamlet under Monte Carlo simulationerne.På basis af en diagrammatisk fortolkning af det af Pedersen og Gerstenbergforeslået modeludtryk for mielle spredningen er en formalisme for udregnin-gen af formfaktorer og strukturfaktorer af sammenhængende aykliske polymerstrukturerer blevet udviklet. Mieller med en arbitrær kernegeometri, forgrenedepolymere og opolymerstjerner er nogle af de strukturere, hvis spredning kanudregnes med formalismen. Formalismen kan inkludere exluded volume veksel-virkninger på samme niveau som for en lineær kæde, og et udtryk for form-faktoren af opolymer med exluded volume vekselvirkninger gives. Ved hjælpaf denne formalisme er formfaktoren for en triblokopolymerstjerne udregnetmed og uden exluded volume vekselvirkninger. Disse udtryk er blevet �ttet tilMonte Carlo simulationsresultater for spredningen uden exluded volume veksel-virkninger for f = 2; 3 og 6 arme, og med exluded volume vekselvirkninger forf = 2. Under simulationerne blev spredningen indsamlet for hele stjernen samtfor de tre blokke svarende til spredningsbidragene for �re forskellige kontraster,og alle �re kontraster blev �ttet samtidigt. Disse �ts viser en fortræ�elig over-ensstemmelse mellem simulerede spredningsresultater og de teoretiske udtryk.



Chapter 3IntrodutionComplex �uids exhibit many interesting phenomena. They have strutures ona mesosopi sale, and the presene of these strutures yield a surprising re-sponse to the presene of external �elds suh as shear, eletrial, or magneti�elds. Some examples are for instane shear-indued birefringene of polymerssolutions, eletrial �eld-indued birefringene of liquid rystals, and the order-ing of ferro-liquids in external magneti �elds [1, 2, 3℄. Complex �uids an alsobehave as solids on short time sales, and as �uids on long time sales. Examplesof omplex �uids are mud, toothpaste, paint, shampoo, and liquid rystals aswell as many biologial �uids suh as ell ytoplasm and blood. Thus omplex�uids are quite ommon, but their behaviour are qualitatively di�erent from�simple� �uids.Complex �uids onsisting of a olloid suspension of large partiles or moleulesan self-assemble in numerous strutures, depending on the shape of the olloidalpartiles or moleules and their interations. Solutions and melts of polymersand opolymers o�er a system, where the arhiteture and hemial propertiesof the polymers an be designed and numerous strutures an be obtained as aresult [4℄.A opolymer onsists of a sequene of hemially di�erent bloks of poly-mers joined end-to-end forming a long linear moleule. Copolymers are unableto undergo marosopi phase separations, but miro-phase separations are pos-sible. The struture of the miro-phase separated domains are determined by aminimisation of the surfae energy between domains of di�erent bloks, how-ever, the entropy of strething polymers hains also a�ets the shape of thesedomains[5℄. Diblok opolymers an also self-assemble into miellar aggregatesin a solvent that is seletive for one blok [6℄. Many possible ore geometriessuh as spherial, elliptial, and ylindrial ores are possible. Spherial mi-elles an, furthermore, order in rystalline strutures suh as body-enteredor fae-entered ubi rystals depending on the range of the mielle-mielleinterations, and ylindrial mielles an order into hexagonal rod strutures[7, 8℄.Polymers are also used for modifying the mehanial, hemial or biologialproperties of solid or liquid surfaes [9, 10, 11℄. Diblok opolymers, for instane,provides a maromoleular analogy of amphiphili moleules [12℄, and an be7



8 CHAPTER 3. INTRODUCTIONused to modify the properties of a liquid surfae or by adsorbing at a solidinterfae.Grafting polymers onto the surfae of a olloid aggregate introdues a re-pulsive interation between aggregates, whih inhibit oagulation and/or oales-ene behaviour. The repulsive interations is due to the fat that the polymeron�gurational degrees of freedom is redued if it is squeezed between two ol-loidal aggregates. This leads to a derease of the on�gurational entropy [13℄,and is the ause of the repulsive interations between the olloidal partiles.Tethering polymers to a surfae an at as a lubriant or an adhesive betweensurfaes [14, 15℄, and tethered polymers an inrease bioompatibility and in-hibit protein adsorption [10, 16℄. Lipid vesiles (liposomes) proteted by diblokopolymers have also been suggested for drug delivery systems. Drug moleules,dissolved in the lipid layer or the interior, are proteted from enzymati degra-dation by the opolymers, and from being �ltered from the blood stream in theliver or kidneys [17℄.Advanes in polymer synthesis allow good ontrol over the polymerisationproess, and existing tehniques an realize many polymer arhitetures suh asthose shown in �gure 3.1. Strutures an be mapped out in terms of struturalphase-diagrams by systematially varying the polymer arhiteture and exper-imental parameters suh as onentration, solvent quality, and temperature.These an be used to formulate and test theories that relate polymer arhi-teture and experimental parameters to struture, and test theories preditingthe marosopi mehanial, rheologial, eletri or magneti properties of theomplex �uids. This yields information about the basi physial proesses thatleads to the emergene of strutures in omplex �uids, and an understandingthe physial proesses allows the struture of omplex �uids to be designed forpratial appliations.Various tehniques exist for probing the struture of omplex �uids [18℄, how-ever, small-angle X-ray and neutron sattering tehniques are ideally suited forobtaining detailed strutural information. Unfortunately sattering tehniquesdo not yield a piture of the struture suh as real spae methods like mi-rosopy, nor is there in general an easy way of inverting the results from asattering experiment to obtain the struture. This is in a very real sense due toa very omplex and onvoluted dependene of the measured sattering on thestruture of the omplex �uid.One way to infer struture from sattering data is to �t strutural modelsto the observed sattering. Eah model represents the expeted sattering froman analytial model of a struture or is the result of a parametrisation of resultsfrom simulations. This provides a �tool box� of models that an be �tted to theexperimental data, i.e. free the model parameters must be optimised in orderfor the model sattering to agree with the experimentally observed sattering.If a good agreement is obtained, it suggests that the struture present in thesample is the same struture as that represented by the model, and that theparameters estimated by the �t proedure are most likely to orrespond to the�real� values of those parameters [19℄.The aim of the present thesis is to present and validate an expression for thesattering from dilute solutions of diblok opolymer mielles with a spherial



3.1. POLYMERS 9ore. Monte Carlo simulations of a mesosopi mielle model has been used toobtain the sattering that would be obtained from an almost ideal satteringexperiment. Hene, any sattering expression an be ompared to the satter-ing from a mielle in the ideal ase, where in priniple the sattering is exat(exept for statistis due to a �nite number of samples) and the real values ofall parameters are known in advane.3.1 PolymersPolymers are string-like objets onsisting of a long sequene of monomers. Themost important property of a polymer is the onformational entropy assoi-ated with the many internal degrees of freedom of a hain [4℄. The entropiallyfavoured on�guration of a polymer is that of a random walk, however, theon�guration is also in�uened by the di�erene between monomer-monomerand monomer-solvent interations. These are e�etively the same in a �-solventand as a result monomers are approximately non-interating, in whih ase theon�guration is only determined by the entropy.In a bad solvent monomer-solvent interations are very unfavourable om-pared to monomer-monomer interations, and as a result ompat �ollapsed�polymer on�gurations are energetially favourable. However, in a good solventmonomer-solvent interations are negligible ompared to monomer-monomer in-terations in whih ase the eah monomer will be surrounded by a volume fromwhih other monomers are exluded. Hene the name �exluded volume� inter-ations. The preferred on�guration of a polymer in a good solvent will be thatof a self-avoiding random walk, and the hain will swell relative to an non-interating random walk. In the limit where the monomer-monomer potentialan be regarded as a hard-sphere potential, the enthalpy is either in�nite or zero,and the free energy is independent of temperature i.e. an athermal solvent.Varying the polymer onentration in a good solvent yield three qualitativedi�erent regimes [20, 21℄: dilute solution, semi-dilute solution, and a melt. Ina dilute solution eah polymer is far from other polymers and the solution anbe regarded as an ideal gas of hard spheres, where eah hard sphere has aharateristi size given by the radius of gyration of the polymer. The solutionenters the semi-dilute regime when the polymer density exeeds the overlapdensity, whih is de�ned by the inverse of the volume oupied by one polymerhain in an unperturbed on�guration. Polymers will inter-penetrate eah otherforming a transient network of intermeshed hains above the overlap density.The harateristi hain size of dilute solutions is replaed by a harateristimesh size or orrelation length in semi-dilute solutions, whih de�nes a lengthsale above whih no orrelations due to polymer onnetivity persists, andbelow whih interations between di�erent hains are negligible. If no solventis present, i.e. the volume fration of polymer is unity, polymers will be in amelt state. The preferred hain onformation will be that of a non-interatingrandom walks as predited by Flory [22℄. This an be understood as follows: ina good solvent the enthalpy ontribution from monomer-monomer interationsdereases as the hain swells, however, in a melt swelling would not derease



10 CHAPTER 3. INTRODUCTIONthe number of the monomer-monomer ontats as there is no free spae toswell into. As a result the enthalpy is una�eted by swelling, and the preferredon�gurations will be the non-interating random walk on�gurations favouredby the entropy .3.2 Tethered hainsPolymers an be tethered to a surfae by one end, thus forming a di�use layeron the surfae [9℄. Some tethered hain strutures are shown in �gure 3.2. Theequilibrium properties of a tethered polymer layer at an impenetrable surfaein a good solvent follow from the balane between entropi fores and exludedvolume interations. The latter favour a state with a minimum of monomer-monomer ontats, e.g. a state with a low density of monomers. Suh a statean be ahieved by inreasing the available volume per hain, i.e. by the hainstrething away from the surfae. Entropi fores, however, will tend to maximisethe number of available hain on�gurations by opposing the hain strethingand by shifting the orona away from the surfae to some extent. If the inter-fae is onvex a hain an get a relative larger available volume by strethingompared to �at interfaes. As a result, surfae urvature has a large impat onthe monomer density distribution away from the surfae, and tends to reduehain strething for onvex surfaes.At low surfae overage, polymers will have a mushroom like shape dueto surfae expulsion, however, at very high surfae overage exluded volumeinterations dominate and hains will be strongly strethed forming a polymeribrush. A broad rossover region of intermediate surfae overages exists betweenthese limits and experiments are typially arried out in this regime.Many theoretial tehniques have been applied to the problem of tetheredhains on a planar or urved surfaes. Saling theories treat polymers as losepaked blobs with a size given by the loal orrelation length. It is impliitlyassumed that the loal polymer onentration throughout the polymer layer isin the semi-dilute regime. From the blob desription, density pro�les an beobtained as well as preditions of the dependene of the width of the tetheredhain layer as funtion of hain length and surfae overage. Daoud and Cotton[23℄ made a model for the pro�le of star polymers using a blob desription, whihwas modi�ed by Halperin to desribe small �nite size ores [24℄.Self-onsistent �eld (SCF) methods [25, 26, 27, 28, 29℄ an be derived fromthe statistial physis of hain moleules [30℄. From SCF methods the pro�lesan be obtained for moderately high surfae overages and weakly interatinghains. SCF methods break down in the presense of large density �utuations,for instane at lower surfae overages. In the limit of extreme strething lateral�utuations are weak and the path of a polymer hain an be mapped ontoa lassial mehanial problem of a falling partile in a potential as originallyshown by Semenov [31℄.The thermodynamis of polymers layers at �at interfaes has been inves-tigated by Carignano and Szleifer [10, 32, 33℄ using a single-hain mean �eldtheory. This approah inludes all the intra-hain interations within the ho-



3.2. TETHERED CHAINS 11sen hain model, and a mean �eld approah is used for solvent moleules andother hains. This approah provides the osmoti pressure pro�le away from thesurfae and pressure-area isotherms.Tethered polymers at �at and urved interfaes have been investigated byMoleular Dynamis and Monte Carlo methods [34, 35, 36℄. Computer simu-lations have primarily been used for obtaining density pro�les as funtion ofvarious parameters. Common for all these approahes, at least as they are ur-rently applied, are that none of them produe expressions that an be used foranalysing experimental sattering data. However, Monte Carlo and MoleularDynamis simulations an easily be modi�ed to sample sattering orrespondingto an ideal sattering experiment with ontrast variation.
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Figure 3.1: Di�erent polymer strutures (from [4℄).
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Figure 3.2: An illustration of some tethered hain strutures (from [9℄).
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Chapter 4TheoryThis hapter introdues the theoretial bakground for the summary of arti-les, and the artiles themselves. First basi sattering theory inluding ontrastvariation tehniques and the sattering from a solution of di�erent partiles areintrodued. The relation between sattering, orrelation funtions, and ther-modynamis is derived. Two setions derive expressions for the sattering fromdilute and semi-dilute polymer solutions. The main topi of the thesis is satter-ing from aggregates in solution espeially miellar aggregates and models of themiellar sattering, and this is introdued after a setion on ore-shell models.The hapter is onluded with a brief remark on the interpretation of satteringdata, and a heuristi introdution to Maximum Entropy methods. For furtherinformation the reader is referred to the literature on sattering theory andappliations to �uids and soft ondensed matter, see e.g. [18, 37, 38, 39℄.4.1 Basi sattering theoryIn a general sattering experiment a beam of inident radiation illuminates avolume of matter, and the sattered radiation is deteted at a ertain anglerelative to the transmitted beam. The observed sattering depends on the in-teration between the beam and matter within the sattering volume. Typialbeams onsist of laser light, X-rays from a synhrotron or onventional soure,or neutrons from a reator or spallation soure.The inident radiation is represented as a plane wave with a wave vetor kiand the sattered radiation is approximated by a plane wave with wave vetorks, whih is de�ned by the position of the detetor relative to the transmittedbeam. Assuming that the sattering proess is elasti i.e. k = jkij = jksj, andthat the sattering is weak suh that multiple sattering events an be negleted,it follows from quantum mehanis using the �rst Born approximation [37, 40℄that the deteted intensity is given by the di�erential ross setiond�d
 / jhksjU(r)jkiij2 :Here U(r) is the interation potential between radiation and matter. Assum-ing that the potential is aused by many di�erent satterers loated at positions15



16 CHAPTER 4. THEORYrj. Then the potential an be expressed as the sum U(r) = Pj Uj(r � rj),where Uj is the interation potential between the j'th satterer and the inidentradiation. This yields a matrix elementhksjU jkii =Xj Uj(q)e�iq�rj ;where the sattering vetor q is de�ned as q = ki�ks. The momentum transferof the sattering proess is given by �hq. The length of the q vetor is diretlyrelated to the angle 2� between the transmitted beam and the sattered beammeasured at the detetor position as jqj = 2k sin(�), and the wavelength of theinident radiation is � = 2�=k. The sattering due to strutures with a longerlength sale than the inident radiation is loated very lose to the transmittedbeam. Aordingly, sattering tehniques of measuring strutures longer lengthsale than the inident radiation are known as small-angle sattering tehniques.Neutrons are sattered from the atom nulei, and it is a good approximationto assume that the spatial extension of the potentials is small ompared to thewavelength of the inident radiation, in whih ase the satterers an be regardedas point-like, and the neutron interation potential an be approximated by adelta funtion Uj(r) = 2��h2m bjÆ(r);where bj is the sattering length. This potential is also known as the Fermipseudo-potential. The sattering length of neutrons has a ompliated depen-dene on the atom number, isotope and spin state, and an even be negative.The sattering from a number of point-like satterers beomesd�d
(q) / ������Xj bje�iq�rj ������2 :By de�ning the sattering length density �(r), the sum is replaed by anintegral over the sattering volume and the result isd�d
(q) / ����Z dr�(r)e�iq�r����2 :The disrete expression an easily be retrieved from the ontinuum desrip-tion using a density de�ned as �(r) =Pj bjÆ(r� rj).The observed sattering is the square of the Fourier transform of the satter-ing length density distribution. Any periodi struture, suh as rystal, will havea large Fourier omponent for the orresponding q vetor, and this will give riseto a strong sattering. As a result a very important appliation for satteringtehniques has been the determination of rystal strutures. A rystal an berigidly mounted in a sattering experiment, however, if the satterers are poly-mers or aggregates suspended in a solvent then many di�erent on�gurationsof satterers are possible. Let ��(r) denote the sattering length density whenthe system is in the �'th state, where the state is used to olletively denote



4.1. BASIC SCATTERING THEORY 17the on�guration of moleules or aggregates. hX�(r)i� denotes a on�gurationalaverage over all the possible states � of the quantity X�. Translational or ori-entational averages, will be denoted by subsript �t� and �o�, respetively. ThushX�(r1; r2)i�to is the on�gurational, translational, and orientational averageof the funtion X�(r1; r2), while a translational and orientational average isdenoted hX�(r)ito.For partiles, moleules or aggregates suspended in a solvent the on�gura-tional, orientational, and translational average of the of the sattering isd�d
 / *����Z dr��(r)e�iq�r����2+�to :For onveniene the sattering length density is replaed by ��(r) = ���(r)+�solvent where ���(r) is the exess sattering length density of the satterersrelative to that of the solvent �solvent. The exess sattering length density isgiven by ���(r) =Pi�bi�(i)� (r), where �(i)� (r) is the number density of the i'thspeies of satterer and �bi the exess sattering length of that speies, where asatterer ould be an atom, a moleule or an aggregate of moleules. Separatingthe ontributions due to speies and solvent the sattering isd�d
(q) / *�����Xi �bi Z dr�(i)� (r)e�iq�r + �solvent Z dre�iq�r�����2+�to :De�ning the Fourier transform of the density distribution as�(i)� (q) = Z dr�(i)� (r)e�iq�r;where integrals are restrited to the sattering volume V , and using the de�ni-tion of the delta funtion the di�erential sattering ross setion beomes/ *�����Xi �bi�(i)� (q) + �solventV Æ(q)�����2+�to :Hene, the sattering due to the solvent will be on�ned to the forwarddiretion q = 0, where it is indistinguishable from the transmitted part of theinident beam, and as a result the Æ(q) term an be ignored. In the rest ofthis hapter the argument of a funtion is used to distinguish between funtionsand their Fourier transforms, suh that f(q) denotes the Fourier transform of afuntion f(r).Using neutron sattering tehniques it is possible to seletively anel sat-tering ontributions from ertain speies by mathing the solvent satteringlength density to the sattering length density of that speies. Sattering on-trast an be enhaned by hanging the isotope omposition of a speies, forinstane by substituting hydrogen atoms with deuterium as often done for poly-mers or biomoleules. This an be used for investigating the struture of an ob-jet, that onsists of di�erent types of satterers for instane di�erent speies ofpolymer moleules, suh as a star polymer or a mielle onsisting of blok opoly-mers [41℄, a omplex biologial struture suh as a virus [42℄ or a biomoleule



18 CHAPTER 4. THEORYsuh as a ribosome, whih an onsist of both RNA, DNA, and proteins. Thisis the basis for neutron ontrast variation studies [18, 43, 44℄, whih yield moreinformation about the strutural arrangements of onstituent speies omparedto what an be obtained by, for instane, X-ray tehniques.4.2 Form and Struture fatorNegleting the forward sattering ontribution due to the solvent the di�erentialross setion for neutron sattering is given byd�d
 / *�����Xi �bi�(i)� (q)�����2+�to :If the sample onsists of a number M objets suspended in a liquid, suhthat they loated at R�i , in the on�guration denoted by �, the sattering lengthdensity distribution is ��(r) = MXi=1 �i�(i)� (r�R�i );where �(i)(r) is the density distribution and �i = �bi R dr�(i)(r) is the totalexess sattering length of the i'th objet, in whih ase it is easy to derived�d
(q) = 1M *����� MXi=1 �i�(i)� (q)e�iq�R�i �����2+�to (4.1)= 1M * MXi=1 �2i �(i)� (q)�(i)� (�q) + 2 MXi>j �i�j�(i)� (q)�(j)� (�q)e�iq�(R�i �R�j )+�to :Assuming that the position of an objet is not orrelated with its orientation,and that the orientation of di�erent objets is unorrelated, the average an berewritten as1M MXi=1 D�2i �(i)� (q)�(i)� (�q)E�o+ 2M MXi>jh�i�(i)� (q)i�oh�j�(j)� (q)i�o De�iq�(R�i �R�j )E�to :The form fator of the i'th objet is de�ned as Fi(q) = D�(i)� (q)�(i)� (�q)E�o,the form fator amplitude as Ai(q) = h�(i)� (q)i�o, and the enter-to-enter stru-ture fator as Hij(q) = Dexp[�iq � (R�i �R�j )℄E�to. Using these abbreviationsthe sattering funtion an be stated asd�d
(q) = 1M MXi=1 �2i Fi(q) + 2M MXi>j �i�jAi(q)Hij(q)Aj(q): (4.2)The form fator desribes the sattering from two sites within the sameobjet, while the seond term desribes the interferene sattering from sites



4.2. FORM AND STRUCTURE FACTOR 19belonging to di�erent objets. If the positions of the di�erent objets are un-orrelated as it will be in a very dilute solution, then Hij(q) = 0 and only thesattering due to the form fator is observed. The seond term is a produtof Fourier transforms, and by virtue of the Fourier onvolution theorem thisorresponds to a onvolution of distributions. Thus the seond term an be in-terpreted in real spae as the onvolution of three distane distributions: Ai(r),whih is the distribution of distanes between sites in objet i and its enter,and Hij(r) is the distribution of distanes between the enter of objet i andj, and a distribution of distanes between the enter and sites within objet j.The generalisation of this interpretation is presented in artile IV.In the speial ase where only one type of objet is present, eq. (4.2) yieldsd�d
(q) = F (q)Sapp(q);where the apparent struture fator is Sapp(q) = A2(q)H(q)=F (q) + 1. H(q)is the enter-to-enter struture fator, i.e. the Fourier transform of enter-to-enter distanes between di�erent objets. In the speial ase where the objetsare spherially symmetri F (q) = A2(q) (see setion 4.9) and the apparentstruture fator is Sapp(q) = H(q)+1. The form fator arries information aboutdistanes within a objet and thus indiretly interations within that objet,whereas the struture fator arries information about the distanes betweendi�erent objets, and thus arries information about objet-objet interations.Using the Ornstein-Zernike relation the struture fator an be alulated for aknown pair-potential between objets given a suitable losure relation [39℄.In general the sattering length density depends on the interation betweenthe inident radiation and the atoms in the sample volume [18, 43℄. Light andX-ray photons are sattered from eletrons, while neutrons, on the other hand,interat with the atomi nulei via weak short-ranged nulear fores. It is alsopossible to de�ne sattering length densities in the ase of light and X-ray sat-tering, and the result is that an equation exatly as that of neutron sattering isobtained, exept with di�erent expressions for the sattering lengths. For X-raysthe sattering length bi is the atomi form fator of the i'th atom and depends onq, while �(r) is proportional to the eletron density distribution in the sample.The interpretation of the sattering length for light sattering is more omplex,but it is related to the polarizability of the satterers, and this an be expressedusing the derivative of the index of refration with respet to onentration.In order to simplify the notation it will be assumed that only one speies ofsatterer is present, in whih ase a sattering funtion S(q) an be de�ned asS(q) = 1N *����Z dr��(r)e�iq�r����2+�to ; (4.3)where N is the number of satterers given by N = R dr��(r). The number ofsatterers is assumed to be �xed and independent of state �. The satteringfuntion is independent of the type of radiation that is used. The di�erentialross setion is related to the sattering funtion by the exess sattering length,whih depends on the type of radiation, as



20 CHAPTER 4. THEORYd�d
 / N�b2S(q)At this level no assumptions have been made about the nature of the sat-terers. They ould be aggregates, polymers moleules, or individual atoms. Norhas any assumptions been made about the strutural arrangements of objets.4.3 Correlation funtionsThis setion introdues orrelation funtions of densities orresponding to a sin-gle speies of satterer, and no assumptions are made regarding the nature ofthe satterers. They ould be atoms, moleules, or aggregates. The orrelationfuntions will be related to the sattering funtion and later to a general statis-tial physial property. Results presented in the following setions are orreteven in the absene of orientational and translational averages, and as a resultthe these averages are desribed in a separate setion.Expanding the norm square in the sattering expression eq. (4.3) the sat-tering funtion an be rewritten asNS(q) = �Z dr1��(r1)eiq�r1 � Z dr2��(r2)e�iq�r2�� = h��(q)��(�q)i� ;here ��(q) is the Fourier transform of the number density distribution in the �'thstate. Using the fat that the on�gurational average and Fourier transformationare both linear operations and an be interhanged, the sattering funtion anbe rewritten as NS(q) = Z dr1dr2 h��(r1)��(r2)i� eiq�(r1�r2)� Z dr1dr2C(r1; r2)eiq�(r1�r2) = C(q);where C(r1; r2) � h��(r1)��(r2)i� de�nes the density-density orrelation fun-tion, and C(q) = h��(q)��(�q)i� its Fourier transform. The sattering funtionS(q) is given by the Fourier transformed density-density orrelation funtionC(q). The orrelation funtion ontains information about to what extend thedensity at one point r1 is �related to� the density at another point r2. In theabsense of interations, either diret or indiret, between partiles at the two po-sitions, they will be statistially independent. Thus orrelations an be regardedas a measure of the strutures imposed by interations between partiles. Theorrelation funtion beomes C(r1; r2)! h��(r1)i� h��(r2)i� for jr1 � r2j ! 1as interations are assumed to be of a short range. This assumption is not orretfor rystalline materials, where there is long ranged order.The density distribution of the �'th state ��(r) an be expressed in terms ofthe on�gurationally averaged density �(r) = h��(r)i� and a density �utuationÆ��(r) de�ned as ��(r) = �(r) + Æ��(r). Inserting this in the de�nition of theorrelation funtion and expanding using hÆ��(r)i� = 0 yields



4.4. STATISTICAL PHYSICS 21C(r1; r2) � h��(r1)��(r2)i� = �(r1)�(r2) + hÆ��(r1)Æ��(r2)i� :The density orrelation funtion is the sum of two ontributions, one origi-nating from the produt of average densities, and another originating from the�utuations of individual on�gurations about the average density. The den-sity �utuation orrelation funtion (also known as the Ursell funtion) is herede�ned as D(r1; r2) � hÆ��(r1)Æ��(r2)i� = C(r1; r2)� �(r1)�(r2);for large distanes the �utuation orrelation funtion onverges to zero. Insert-ing the orrelation funtion in the expression for the sattering funtion yieldsNS(q) = Z dr1dr2C(r1; r2)eiq�(r1�r2);= ����Z dr�(r)eiq�r����2 + Z dr1dr2 hÆ��(r1)Æ��(r2)i� eiq�(r1�r2);= �(q)�(�q) +ND(q):The sattering funtion has two ontributions, one is the on�gurationallyaveraged density distribution j�(q)j2, and another due to density �utuationsabout the average density, this latter ontribution is given byD(q) = 1N hÆ��(q)Æ��(�q)i� :The density �utuation orrelations are typially short ranged, and theFourier integral an be regarded as an integral over a number of ells withsome harateristi size. The Fourier integral will be proportional to the num-ber of ells, and the de�nition of the �utuation sattering inludes an inversefator N , suh that it is independent of number of satteres in the large volumelimit, i.e. D(q) beomes an intensive quantity.4.4 Statistial PhysisIn order to understand the physial information ontained in the �utuation or-relation funtion, a relation between orrelation funtions and statistial physishas to be established (the following derivation is inspired by [38℄). An averageover possible states an be expressed ashX�i� = P�X�e��H�P� �e��H� ; (4.4)where H� is the Hamiltonian of system when it is in the �'th state and � =1=(kbT ), where kb is the Boltzmann onstant, and T is the absolute temperature.We are interested in ensemble averages of densities and orrelation funtions



22 CHAPTER 4. THEORYbetween densities, the grand anonial ensemble whih depend on the volumeV , temperature T , and an external hemial potential �eld �(r) is a good hoie.The grand anonial partition funtion is given by�[�(r)℄ =X� exp���H� + � Z dr��(r)�(r)� :How this sum is evaluated, and how the Hamiltonian and the number densityof a state �� for an atual polymer or polymer aggregate is expressed is outsidethe sope of this thesis (see e.g. [45, 46, 47, 48℄). Variational alulus [49℄ anbe used to alulate the response of the grand anonial partition funtion toin�nitesimal variations of the external hemial potential, whih shows it anbe used as a generating funtion for orrelation funtions. For exampleÆ�Æ�(r1) ln�[�(r)℄ = 1�� ÆÆ�(r1)�[�(r)℄= 1�X� exp���H� + � Z dr��(r)�(r)� ÆÆ�(r1) Z dr��(r)�(r):Using the de�nition Æ�(r)=Æ�(r1) = Æ(r � r1) [39, 38℄ in the integral, thefollowing result is obtained1�[�(r)℄X� ��(r1) exp���H� + � Z dr��(r)�(r)� ;whih for �(r) = 0 redues toP� ��(r1) exp (��H�)P� exp (��H�) = h��(r1)i� :The linear response of ln�, i.e. the grand potential, to a variation in theexternal hemial potential, is the on�gurational average of the density. Thefollowing relations an be dedued with relative ease in a similar mannerÆ�Æ�(r1) ln�[�(r)℄�����=0 = h��(r1)i� = �(r1); (4.5)1�[�(r)℄ Æ�Æ�(r1) Æ�Æ�(r2)�[�(r)℄�����=0 = h��(r1)��(r2)i� = C(r1; r2);and Æ�Æ�(r1) Æ�Æ�(r2) ln�[�(r)℄�����=0 = hÆ��(r1)Æ��(r2)i� = D(r1; r2): (4.6)The derivation shows that the average density, the density orrelation fun-tion, and the density �utuation orrelation funtions an all be regarded asfuntionals of the external hemial potentials, whih in the � = 0 limit orre-sponds to the previously de�ned orrelation funtions. In partiular a ompari-son of eq. (4.5) and eq. (4.6) shows that the following relation is valid



4.4. STATISTICAL PHYSICS 23�(r1; r2) � Æ�(r1)�Æ�(r2) = D(r1; r2): (4.7)�(r1; r2) is a generalised suseptibility as it relates response of the averagedensity at r1 to a hange in the external hemial potential at r2, and this isidential to the density �utuation orrelation funtion. This follows diretlyfrom the de�nition of the grand anonial partition funtion, and in generalthe linear response of the density of an extensive parameter with respet to itsonjugate �eld is given by the �utuation orrelations of that extensive density.This type of relation is known as a �utuation-dissipation theorem [38, 39, 50℄.A onnetion to the isothermal ompressibility follows when Taylor expand-ing the density in the external hemial potential �eld as�[r1;�(r)℄ = �[r1;� = 0℄ + Z dr2 ÆÆ�(r2)�[r1;�(r)℄�����(r)=0 Æ�(r2) + � � �= �[r1;� = 0℄ + � Z dr2D(r1; r2)Æ�(r2) + � � � :In the speial ase where the hemial potential is a small onstant Æ�(r2) =Æ�, this beomes��(r1)�� = �(r1; Æ�) � �(r1;� = 0)Æ� = � Z dr2D(r1; r2) + � � � ;using the de�nition for D(q) and the mean density � = N=V = V �1 R dr1�(r1)the equation an be rewritten as���� = 1V Z dr1��(r1)�� = �V Z dr1dr2D(r1; r2) = ��D(q = 0):The response of the average density to a hange in a onstant external hem-ial potential is given by the q = 0 limit of the density �utuation orrelationfuntion. This result an an be related to the isothermal ompressibility �T ,whih is de�ned as �T � � 1V �V�p ����T;N = ��2 ���� ����T :Here the Gibbs-Duhem relation V dp = Nd�+ SdT and � = N=V was usedto rewrite the expression. The isothermal ompressibility an be related to theFourier transform of the density �utuation orrelation funtion as�T = ���1D(q = 0):The osmoti pressure � an be expanded in the density in a virial expansion�� = �+A2�2 +A3�3 + � � � ;where the virial oe�ients A2; A3; : : : ontains information about interations.If the partiles are non-interating, e.g. as they are in an ideal gas, then A2 =



24 CHAPTER 4. THEORYA3 = : : : = 0 and the expansion redues to the ideal gas law. The isothermalompressibility an be expressed using the virial expansion as follows�T = ������ ��1 = �� �1 + 2A2�+ 3A3�2 + : : :��1 :Hene, by obtaining the forward sattering due to density �utuation orre-lations, the virial oe�ients an be obtained as1D(q = 0) = 1 + 2A2�+ 3A3�2 + : : : = 1 + 2A2(�)�: (4.8)Here the apparent seond virial oe�ient A2(�) = A2 + 32A3� + � � � wasused to absorb all higher order terms. By doing series of sattering experimentsat inreasing densities, and extrapolating to obtain the forward sattering, thevirial oe�ients an in priniple be obtained [51, 52℄. In pratie multiple sat-tering sets an upper limit for the densities that an be probed in partiular forlight sattering.The on�gurational average of a polymer solution is a homogeneous densitydistribution, as a result the sattering due to the average density is in the forwarddiretion, and all the observed sattering will be due to the density �utuationorrelation funtion, and as a result the observed sattering an extrapolated toq = 0 to yield the osmoti ompressibility ��=�� [51, 20℄.4.5 Positional and orientational averagesObjets suspended in a liquid medium are not �xed, and as a result of thistranslationally invariane, the orrelation funtion C(r1; r2) an only dependon the relative vetor C(r2 � r1) = hC(r1; r2)it. Nor is there a �xed orienta-tion, as a result of this rotational invariane the orrelation funtion an onlydepend on the length of the relative vetor as C(jr2 � r1j) = hC(r2 � r1)io =hC(r1; r2)ito. Thus positional and orientational average an be performed byinserting V �1Æ(r � jr2 � r1j) in any R dr1dr2 � � � integral, where the fator V �1is due to the translational invariane. For instanehC(r1; r2)ito � V �1 Z dr1dr2C(r1; r2)Æ(r � jr2 � r1j);= V �1 Z dr1d(r2 � r1)C(r2 � r1)Æ(r � jr2 � r1j):The integrand is independent of r1, and the r1 integral yields a fator ofvolume, that is anelled by the prefator. Expressing the relative vetor r2�r1in spherial representation yields= Z d(os �)d�r2C(r) = 4�r2P (r):4�r2P (r) is the pair-distane distribution between the objets, e.g. it givesthe number of partiles in a spherial shell between r and r + dr around any



4.6. POLYMER MODELS 25objet. The sattering funtion of a �xed radial shell an be derived using thesame proedure asS(q; r) / V �1 Z dr1dr2C(r1; r2)Æ(r � jr2 � r1j)e�iq�(r2�r1)= Z d(os �)d� r2P (r)e�iqr os � = 4�r2 sin(qr)qr P (r):The sattering is only a funtion of q, and performing the radial integral ofthe pair-distane distribution yields the normalised sattering funtion asS(q) = R dr4�r2 sin(qr)qr P (r)N R dr4�r2P (r) :This expression an be used for alulating the sattering from a polymerhain when an expression for the pair-distane distribution is available.4.6 Polymer modelsPolymers are onneted string-like objets, whih gives rise to onnetivity or-relations between di�erent sites on the same hain. Polymers also onsist ofmonomers, whih interat with neighbouring monomers, this interation givesrise to rigidity of the polymer bak bone, due to the torsional potential ofthe bonds and possible steri interations from side groups on the monomers.Monomers far from eah other along the hain, an be spatially lose due tothe onformation of the polymer hain, and this leads to exluded volume in-terations. Finally, monomers interat with the solvent moleules, whih meansthat the preferred polymer onformations show a strong dependene on solventquality and temperature [4℄.A hain with ontour length L from end-to-end or orrespondingly n seg-ments, an be regarded as a polymer onformation given by a vetors Ri whihdenote the position of a i'th site/segment along the hain. One parameter thatdesribes a polymer is the mean square site-site distane whih is de�ned asDR2ijE = ����R�i �R�j ���2�� ;where the average is over all onformations of the polymer, andR�i �R�j denotesthe separation vetor from site j to site i when the hain is in the �'th on�g-uration. From this expression the Hausdor� dimension dH [53℄ an be de�nedas qhR2iji / ji� jj 1dH :The �true� Hausdor� dimension is obtained for ji � jj ! 1. For hains of�nite length there will be orretions to the Hausdor� dimension. A speial aseof the site-to-site distane is the end-to-end distane, whih is de�ned as



26 CHAPTER 4. THEORYDR2eeE = DjR�0 �R�nj2E� ;Another quantity is the radius of gyration, whih is de�ned byDR2gE = * 1n nXi jR�i �R�mj2+� where R�m = 1n nXi R�i :The radius of gyration is the mean square distane from a site on the hainto the hain enter of mass, and it is a measure of the spatial extension of thehain. The radius of gyration an also be shown to be [54℄DR2gE = 1n2 * nXi;j ���R�i �R�j ���2+� :The most simple model of a polymer is a �exible hain model, i.e. a randomwalk. In this model the step length l0 of the random walk must be longer than thelength sale over whih hain orientation information persists in a real polymer,and hene the �exible hain model only aptures large sale properties of a realpolymer. The model inludes e�ets due to onnetivity, however, e�ets due tohain-hain and hain-solute interations are negleted, and thus it orrespondsto the physial ase of a polymer in a �-solvent, where polymer interationsan approximately be negleted. From basi random walk theory it follows thatthe mean square site-to-site distane hR2iji = ji � jjl20, where l0 is the segmentlength. In partiular hR2eei = l0L, and from this equation it follows that dH = 2.The radius of gyration an be shown to be hR2gi = l0L=6 in the limit of manysegments [54℄. From basi random walk theory it an further more be shownthat the pair-distane distribution between sites on a random walk is Gaussiandistribution in the large n limit.The angle � between suessive segments is free for the �exible hain model,�xing this angle introdues semi-�exibility in the hain, hene known as thesemi-�exible hain model, this model also neglets interations between di�erentsegments. Flory [54℄ has shown that the expressions for the average end-to-enddistane and radius of gyration for a �exible hain (in the large n limit) are alsovalid for a semi-�exible hain, however, with the segment length replaed by theKuhn Length b as DR2eeE = Lb; and DR2gE = Lb6 :The Kuhn length b is given byb = 1 + os(�)1� os(�) l0:The Kuhn length is the length sale on whih the orientation of subsequentsegments is unorrelated. e.g. it is the step length of the equivalent �exible hain.An approximate expression for the pair-distane distribution of a semi-�exiblehain has been derived by Daniels [55, 56℄.



4.6. POLYMER MODELS 27The Kratky-Porod hain model is obtained from the semi-�exible hainmodel in the limit where nb !1, l0 ! 0, and � ! 0 suh that the number ofstatistial independent segments nb = L=b is �xed, in that ase [54, 57, 58℄DR2eeE = Lb�1� 12nb �1� e�2nb�� ;and DR2gE =  1� 32nb + 32n2b � 34n3b �1� e�2nb�! Lb6 :These expressions redue to the semi-�exible hain result in the limit oflarge nb. The previous models were analytially tratable, however, inludingexluded volume e�ets for both a �exible and semi-�exible hain model leadsto a model, that is very di�ult to handle analytially. The exluded volumeinteration is a very strong and long-ranged interation for polymers in threedimensions. There are three approahes whih an yield results for hains withexluded volume: one is simulation tehniques suh as Moleular Dynamis orMonte Carlo simulations, see e.g. [59, 60, 61, 62℄, another approah is funtionalintegrals [30℄, and a third method is renormalization group tehniques, see e.g.[46, 48, 63, 64℄.Simulation tehniques are limited by the omputer time it takes to performa simulation, at present, however, it is possible to perform simulations on veryomplex hain models. It is also possible to simulate hains on�ned to pores[65℄, or hains tethered to surfaes. The disadvantage of simulation tehniquesare that results are obtained for a partiular set of parameters, and repeatedsimulation runs sweeping the parameter spae are neessary before general on-lusions an be made just like performing a series of experiments.Funtional integrals provide a statistial physial desription of polymerhains. Polymers are represented as a ontinuous urve R(l), with an energyfuntional given by an Edwards Hamiltonian HE[R(l)℄ [66℄. The hain partitionfuntion an be obtained by integrating over all ontinuous urves (hene thename funtional integrals) where eah urve is weighted by the Boltzmann fa-tor exp(�HE[R(l)℄=kbT ). Funtional integrals of both �exible and semi-�exiblehains an be formulated. A funtional integral an be reexpressed in terms of adi�usion equation, and the problem of exluded volume hains an be expressedas a self-onsistent solution of a di�usion equation i.e. a SCF theory [66, 67℄.Renormalization group tehniques (RGT) attak the problem of exludedvolume by expanding the funtional integral in powers of the site-site interationparameter. This expansion is divergent in three dimensions, however, in fourdimensions the exluded volume interation an be regarded as a perturbation.Heuristially this an be explained by the fat that the Hausdor� dimension of aexluded volume hain is less than two (it is dH � 1:7 [68℄), two planes (dH = 2)will almost always ross eah other in a four dimensional spae, while they willalmost never ross eah other in a �ve dimensional spae. Similarly two self-avoiding hains will rarely overlap if the dimension is four [21℄. The expansionan furthermore be expanded in � given by the dimensionality d = 4��. Through



28 CHAPTER 4. THEORYthe renormalization proedure singular terms around d = 4 are absorbed in aseries of relations relating mirosopi (bare) quantities to e�etive marosopiquantities. Hene the ill-behaved mirosopi model is reformulated into a well-behaved e�etive model that depends only on marosopi quantities, and thesean then be evaluated for � = 1 i.e. in three dimensions.Using a simple mean �eld argument Flory predited a simple saling relation
R2ee� = b2n2� between mean-end-to-end distane and the number of statistialsegments for a �exible hain with exluded volume interations [21℄. Here b is theKuhn length, n is the number of segments whih is assumed to be large. Floryalso gave an expression for the ritial exponent � = 3=(d+ 2). This expressiongives the orret value for one and two dimensions. In three dimensions Florypredited v = 0:6, while RGT predits a value of � = 0:588 [63, 68℄. For 4four dimensions or more � = 0:5. RGT also provides an expression for thepair-distane distribution [60, 64, 69℄ from whih the radius of gyration an bealulated [70℄ as DR2gE = b2n2�2(1 + �)(1 + 2�) :Later studies have shown that di�erent exponents exist for end-to-end, end-to-internal point and internal-to-internal point distributions [60, 64℄. The resultfor a �exible random walk is retrieved in the limit of � ! 0:5. The Hausdor�or fratal dimension of a hain is given by dH = ��1, and this is related to thevolume oupied by a hain in the long hain limit.4.7 Sattering from a dilute solution of �exible poly-mersIn a dilute polymer solution we an neglet the orrelations between positions,orientation, and on�guration of individual hains, and as a result the satteringan be alulated from the pair-distane distribution of a single hain (H(q) =0). For a long �exible polymer without interations between any sites the pair-distane distribution is given by a Gaussian distribution asP (r; l)4�r2dr = � 32�hR2ee(l)i� 32 exp � 3r22hR2ee(l)i! 4�r2dr:This results follows from the fat that the problem of a non-interating�exible polymer an be mapped onto the problem of a random walker, wherethe time in the random walk problem orresponds to ontour length for thepolymer. P (r; l) is the distane distribution for two arbitrary sites on the hainseparated by a distane l along the ontour. The sattering ontribution fromtwo �xed sites separated by a �xed ontour length l is sin(qr)=(qr) averagedover all possible separations r as	(q; l) = Z 10 dr4�r2 sin(qr)qr P (r; l) = exp �blq26 ! :



4.7. SCATTERING FROM A DILUTE SOLUTION OF POLYMERS 29	(q; l) is a on�gurational averaged phase fator for �xed ontour length.The full sattering is obtained by averaging the phase fator over all possiblesites (l1 and l2) on the hain asFDebye(q) = Z L0 dl1dl2L2 	(q; jl1 � l2j) = Z L0 dl2(L� l)L2 exp �blq26 !
= 2 (e�x � 1 + x)x2 ;where the abbreviation x = bLq2=6 = (qRg)2 was introdued. This result was�rst derived by Debye in 1947 [71℄. In a similar manner the form fator ofany polymer hain with a given pair-distane distribution an in priniple bederived. Results for the Daniels and des Cloizeaux distributions [55, 60℄ aregiven in artile IV and shown in �gure 4.1.
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Figure 4.1: Form fators for di�erent pair-distane distributions for Rg = 3:11band L=b = 38 orresponding to the simulation.The form fator of �exible hains with and without interations, semi-�exiblehains without interations, and simulation results with exluded volume inter-ations and semi-�exibility are shown in �gure 4.1. The Daniels approximationbreaks down around qb ' 3 values, but the remaining three form fators showspower law behaviour at high q values. This is aused by the di�erent hainstatistis
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Figure 4.2: Sale dependent Hausdor� dimension orresponding to form fatorsshown in �gure 4.1. ��R�i �R�j �2�� / ji� jj 2dh(ji�jj) ;where dh(ji� jj) is the sale dependent Hausdor� dimension, whih an also bederived from the form fator as as dH(q) = �d(log10(F))=d(log10(q)), and thisis shown in �gure 4.2. For small qb values the hain is probed on very long lengthsales ompared to the radius of gyration, where hains are point-like objetswith Hausdor� dimension is zero. For large values of qb very short length salesare probed, the Debye and des Cloizeaux distributions do not inlude semi-�exibility, and they onverge to the long hain limit of a random walk and aself-avoiding random walk, whih yields Hausdor� dimensions of two (� = 0:5)and 1:7 (� = 0:588), respetively. The Hausdor� from the simulation has a peakat the length sales where the random walk nature of the hain is probed, butthe simulations inludes e�ets of semi-�exibility, whih leads to dH = 1 at largevalues of qb. An extended range of powerlaw behaviour is not observed beauseof the �nite number of segments and few verties per Kuhn length.



4.8. SCATTERING FROM A SEMI-DILUTE SOLUTION 314.8 Sattering from a semi-dilute solution of �exiblepolymersAssuming that N idential polymers eah with n segments/sattering sites isdissolved in a volume V . Assuming further that R�ij is the position of the j'thsegment on the i'th hain when the olletive on�gurations of all the hains isdenoted � (in the following the indies i; l range from 1; : : : ; N and j; k from1; : : : ; n in order to simplify notation). This means that the instantaneous den-sity distribution of the �'th state is given by��(r) = NXi=1 nXj=1 Æ(r�R�ij);while the mean density of sattering sites in the volume is � = nN=V . The solu-tion will be in the semi-dilute regime if 4�R3gN=(3V ) > 1, where Rg is the radiusof gyration of an unperturbed hain. The semi-dilute regime is haraterized byhain densities so large that there are more than one hain within the volumeoupied by an unperturbed hain.The sattering funtion was shown to onsist of two ontributions due tothe on�gurationally averaged density and density �utuation orrelations. Theaverage density is onstant, and as a result the sattering from the averagedensity is proportional to a delta funtion at q = 0, and it will be negleted.The sattering funtion S(q) is the density �utuation orrelation funtion D(q),and is given byS(q) = 1nN *����Z dr��(r)e�iq�r����2+� = * 1nN ������ NXi nXj e�iq�R�ij ������2+�= 1nN NXi nXj;k De�iq�(R�ij�R�ik)E� + 1nN NXi 6= l nXj;k De�iq�(R�ij�R�lk)E� ;whih an be written as S(q) = !(q) + �h(q): (4.9)We have thus written the total sattering funtion as the ontribution fromintra-hain orrelations, and inter-hain orrelations. The intra-hain satteringontribution is de�ned as!(q) = 1nN NXi nXj;k De�iq�(R�ij�R�ik)E� ;whih is simply the Fourier transform of the distane distribution between siteson the same hain. If hain-hain interations are weak, for instane for suf-�iently low densities within the semi-dilute regime, and if we neglet semi-�exibility and exluded volume interations, then !(q) = nNFDebye(qRg). The



32 CHAPTER 4. THEORYinter-hain sattering ontribution is the Fourier transform of the distane dis-tribution between sites on di�erent hainsh(q) = V(nN)2 NXi6=l nXj;k De�iq(R�ij�R�lk)E� :Inter-hain orrelations are long-ranged on the length sale of the harater-isti inter-hain length sale. This is aused by indiret interations mediatedby neighbouring polymer hains. As a result an e�etive inter-hain orrelationfuntion between sites on pairs of polymers an be introdued, whih is alledthe diret orrelation funtion, and denoted (q), this should not to be onfusedby the Fourier transform of the average density distribution C(q). The diretorrelation funtion is introdued in an attempt to deompose the orrelationsindued by indiret interations, mediated by the medium onsisting by all otherpolymers, into an e�etive pair orrelation that inludes only diret interationsbetween pairs of hains. The diret orrelation funtion is expeted to have aharateristi length sale omparable to the inter-hain distanes. In realityeah pair of sites on two hains have a diret orrelation funtion, but an aver-age is often performed over all sites produing a site-averaged diret orrelationfuntion. This is the equivalent site approximation.
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Figure 4.3: Diagrammati expansion of the PRISM equation in terms of intra-hain orrelations !(q), and diret orrelation funtion (q).Following this approah, the sattering an be resolved into ontributionsfrom the individual hain !, a ontribution from the orrelation between twopolymers �!!. A diagrammati expansion is shown in �gure 4.3, where thesattering is interpreted as the orrelation reated by a jump from one site toanother site on the same hain (providing a fator !), a jump from that siteto another site on another hain (�), and �nally a jump to another site onthe other hain (!). Taking higher order terms into aount the result is anexpansion of the sattering funtion asS(q) = ! + �!! + �2!!! + �3!!!! + � � � (4.10)This equation an be regarded as the de�nition of the diret orrelationfuntion. Comparing eq. (4.9) and (4.10) shows that the total inter-moleularorrelation funtion an be written



4.9. CORE-SHELL MODELS 33h(q) = !! + �!!! + �2!!!! + � � � = ! (! + �h) ; (4.11)whih is the Polymer Referene Interation Site Model (PRISM) equation [72,73, 74, 75℄. In PRISM theory an expression for !(q) is assumed, as well as a lo-sure relation, whih relates the diret orrelation funtion (r) to an interationpotential. From the losure relation the total orrelation funtion h(q) an thenbe obtained via the PRISM equation. Solving eq. (4.9) and eq. (4.11) for theintra-hain orrelation funtion ! and the diret orrelation funtion (q) yieldsS(q) = !(q)1� �(q)!(q) :If the diret orrelation funtion is short ranged, the Fourier transformwill essentially be onstant, so we an introdue the approximation ��(�) =�n�(q = 0), where � is the exluded volume parameter. The assumptionthat the exluded volume parameter is a funtion of the density was origi-nally suggested by Daoud et al. [20℄ and rigorously shown by Benoit et al. [76℄.A normalised intra-orrelation funtion is de�ned as !(q) = !(q)=n suh that!(q = 0) = 1. This has the e�et of turning the PRISM expression for thesattering into the form of an Random Phase Approximation (RPA) [73, 76℄S(q) = n !(q)1 + ��(�)!(q) :Thus nS(q = 0) = 1 + �(�)�:The left hand side is the sattering per polymer moleule rather than persatterer. The exluded volume parameter �(�), whih should not be onfusedto the ritial length exponent. A omparison of this expression with eq. (4.8)shows that �(�) = 2A2(�). The exluded volume parameter an be shown todepend only on the redued polymer onentration =� [21, 73℄.4.9 Core-shell modelsCore-shell models desribe the sattering as being aused by a number of onen-tri shells, see e.g. [70, 77℄. Assuming the shells to be of in�nitesimal width, theore-shell model assumes knowledge of the �(s) area density of satterers on the ssized shell. The normalised ore-shell form fator amplitude (Ashell(q = 0) = 1)is given byAshell(q) = ��1 Z 10 dsA(s)	s(q; s)�(s) with � = Z 10 dsA(s)�(s); (4.12)where A(s) is the area and 	s(q; s) is the phase fator of a s sized shell givenby



34 CHAPTER 4. THEORY	s(q; s) = A(s)�1 Z drÆ[f(r; s)℄e�iq�r;where f(r; s) is a shape-funtion. The shape funtion is zero if and only ifthe point r is on the shell with size s. The area of the shell A(s) is given byA(s) = R drÆ[f(r; s)℄. The orientationally averaged form fator and form fatoramplitude of a shell struture isFshell(q) = hAshell(q)Ashell(�q)io and Ashell(q) = hAshell(q)io :An example: For the speial ase of a spherial shell the shape funtion isf(r; s) = jrj � s, in this ase the phase fator is easy to alulate as	sphere(q; s) = A(s)�1 Z drÆ[jrj � s℄e�iq�r= 14�s2 Z d�d(os �)e�iqs os � = sin(qs)qs :Assuming a homogeneous spherial objet the radial density is �(s) = 1 fors < r and 0 elsewhere. The radial integral beomesAsphere(q) = 34�r3 Z r0 ds4�s2 sin(qs)qs= 3[sin(qr)� qr os(qr)℄(qr)3 = �(qr):This result was �rst obtained by Lord Rayleigh [78℄. The form fator ampli-tude for a homogeneous sphere is the simplest possible ore-shell struture andwill denoted �(qr) in the rest of this thesis. Sine the form fator amplitudeonly depends on the magnitude of the q vetor the form fator of a sphere isFsphere(q) = �2(qr). The form fator will always be the square of the form fatoramplitude for any spherial symmetri distribution.A ore-shell model of a mielle with a spherial ore assumes Fmielle(q) =(�orAor(q) + �o�(qRo))2, where the orona form fator amplitude Aor isgiven by eq. (4.12) using some assumed orona pro�le �(r). Hene ore-shellmodels inludes sattering due to an average shell densities (C(q)), but negletsthe sattering sattering due to density �utuations (D(q)) aused by hainonnetivity, and hain interations suh as the orrelation hole [20℄ are ne-gleted. The next setion demonstrates how some of these e�ets an be takeninto aount.



4.10. SCATTERING FROM A MICELLAR AGGREGATE 35
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Figure 4.4: Illustration of a mielle onsisting of a spherial ore and a oronaof dissolved hains.4.10 Sattering from a miellar aggregateA mielle onsists of a ore with some geometrial shape suh as spherial,elliptial or ylindrial, and a orona of dissolved polymer hains. Assumingthat the ore is homogeneous then it an be desribed by a ore-shell modelAs(q). The normalised (A�or(q = 0) = 1) orona form fator amplitude isA�or(q) = 1Nn NXi=1 nXk=1 e�iq�R�ik ;where R�ik is the loation of the k'th vertex on the i'th hain in the orona whenthe orona is in the �'th state. N is the number of hains, and n is the numberof sattering sites per hain (in the rest of this setion all i and j sums areover hains, i.e. they range from 1; : : : ; N). The normalised [Fmielle(q = 0) = 1℄sattering of a mielle an then be written asFmielle(q) = (�h + �o)�2 Dj�hA�or(q) + �oAs(q)j2E�o ; (4.13)where the average is over all on�gurations (���) of the hains in the orona andorientations (�o�) of the mielle. The two terms desribe the orona and ore, re-spetively. �h and �o are the total exess sattering lengths of the whole oronaand ore. These an be written �h = NVh��h and �o = NoVo��o whereN ,No, Vh and Vo are the number of hains in the orona and ore, respetively,and the spei� volume of a single orona and ore hain, respetively. The ex-ess sattering length densities of a orona hain is��h = �orona;hain��solvent



36 CHAPTER 4. THEORYand for ore hain ��o = �ore;hain � �solvent, where �orona;hain,�ore;hain,and �solvent are the sattering length densities of a single hain in the orona,of a single hain in the ore, and of the solvent, respetively. Assuming thatthe ore form fator As(q) is real, whih is the ase if the ore has a parity(R! �R) symmetry, then the miellar sattering an be expressed asFmielle(q) = (�h + �o)�2 D�2hA�or(q)A�or(�q)+�2oA�s (q)2 + 2�h�oAs(q)Re (A�or(q))E�o :These three sattering terms orrespond to the orona form fator, the oreform fator, and an orona-ore interferene sattering, respetively. A nor-malised orona form fator is de�ned byFor(q) = DjA�or(q)j2E�o : (4.14)The orona-ore interferene sattering an be de�ned asSs(q) = hAs(q)Re (A�or(q))i�o :In the speial ase of a spherial ore Ss(q) = �(qr)Aor(q) and Aor(q) =hA�or(q)i�o. Using these de�nitions, the miellar sattering for a spherial oreis Fmielle(q) = �2hFor(q) + �2o�2(qr) + 2�h�o�(qr)Aor(q):The physial interpretation of these three terms is that they, respetively,orrespond to the Fourier transform of the pair-distane distribution betweentwo sattering sites in the orona, two sattering sites in the ore, or between twosattering sites in the ore and in the orona. In the speial ase of a spherialore, the vetor between a site in the orona and a site in the ore an be writtenas a sum of a vetor from the orona site to the ore enter, and from the oreenter to the ore site. Due to the rotational symmetry these two vetors willbe statistially independent and independent on orientation. As a result thepair-distane distribution fatorises into the produt of a orona-site-to-ore-enter (Aor) and enter-to-ore-site (�) probability distributions, the Fouriertransform of whih is Ss(q).The orona sattering an separated into ontributions using several hoiesfor the separation. One possibility is to separate the orona sattering in termsof sattering from the on�gurationally average density, and sattering fromthe density �utuation about this average. Another approah is to separate thesattering in terms of inter-hain sattering and of intra-hain sattering asF(q) = * 1N Xi jA�i (q)j2+�o ; andH(q) = * 1N(N � 1)Xi6=j A�i (q)A�j (�q)+�o ; (4.15)



4.11. INTERPRETATION OF SCATTERING 37where the phase sum A�i of the i'th hain when the orona is in the �'th on-�gurational state is de�ned asA�i (q) = 1n nXk=1 e�iq�R�ik :The orona form fator is the following weighted averageFor(q) = 1N F (q) + N � 1N H(q): (4.16)The physial interpretation of these two terms is as follows: F (q) is theaverage single hain form fator, e.g. the Fourier transformed pair-distane dis-tribution between sites within the same hain. This arries information aboutthe hain radius of gyration, hain length, hain sti�ness, and the number ofstatistial independent segments. It also ontains information about hain on-netivity suh as the fratal dimension of the hain. The Fourier transform ofthe pair-distane distributions between sites on di�erent hains H(q) ontainsinformation about the radial pro�le of the orona, but also hain-hain intera-tions suh as the orrelation hole, whih is present in ordinary three dimensionalpolymer solutions [20, 21℄.4.11 Interpretation of satteringSattering tehniques are very sensitive to the strutural arrangements of thesatterers, espeially periodi strutures. As a result sattering tehniques areideally suited to probe strutural arrangements. However, the basi problem ofsattering tehniques is the inverse problem of how to dedue struture from theexperimental data of the sattering S(q), sine phase information is lost in themeasuring proess only the pair-distane distribution an be reonstruted, andfrom from whih struture must be inferred.Furthermore, the sattering is only known in a ertain range of q vetorsdue to instrumental limitations. Data are subjet to instrumental smearing dueto �nite beam ollimation (how well de�ned are diretions of ks and ki ), wave-length spread (how narrow is the energy distribution e.g. jkij for instane froma neutron soure), and �nite detetor resolution. Finally there are statistiallyerrors on the experimental sattering data. All these soures of error make adiret inversion of S(q) very di�ult in general. Only in the speial ase of aspherially symmetri arrangement of satterers is it possible to analytially in-vert the sattering, as in that ase the Fourier transform is a real funtion, andno phase information is lost due to the norm square exept for an overall sign.Two types of methods exist for inferring the physial struture produing theobserved sattering; these are model �tting and free-form analysis [19℄. In free-form analysis the pair distane distribution is obtained for example by the in-diret Fourier transform method introdued by Glatter [79℄. The method worksas follows: the pair distane distribution is represented as a linear ombina-tion of ubi splines, typially with some 50 spline funtions. The oe�ientsare obtained by �tting the Fourier transformed basis funtions to the observed



38 CHAPTER 4. THEORYsattering data. Finally, if the sattering objets are entro-symmetri the radialexess sattering length density distribution an be obtained from square-rootdeonvolution, also introdued by Glatter [80℄. Instrumental e�et an further-more be inorporated in the �t. The �free form� name of the method followsfrom the fat that the indiret Fourier transform method is independent on anya-priori assumed model expressions, just like maximum entropy methods.Model �ts using least-squares methods [81, 82, 83, 84℄ is another way of in-ferring the struture [85℄. A partiular model is assumed, for instane a modeldesribing the sattering expeted from a solution of miellar aggregates. Themodel will depend on a number of parameters, and the most likely set of param-eters are obtained from �tting the model sattering to the experimental data.The goodness-of-�t is typially estimated by the redued hi-square statisti�2red, whih is de�ned as�2red(�1; : : : �M ) = 1N �M NXi=1 �Iexpi � Imod(qi;�1; : : : �M )�2�2i ;where N is the number of experimental data points Iexpi , qi is a set of �xedontrol parameters e.g. detetor positions, and �i is the error of the experimen-tal data, while Imod is the model predition of the sattering at qi. The modeldepends on the M parameters �1; : : : ; �M . The most likely set of ontrol pa-rameters assuming the model is true are determined by minimising �2red. If theobtained redued hi-square is lose to unity it suggests that the model is agood desription, and that the estimated parameter values are reliable, as themodel urve will on average pass through a 2�i sized window about every datapoint Iexpi . If the redued hi-square is �large� the model is likely to be a wrongdesription of the data, and parameters obtained by the �ts are meaningless. If,on the other hand, the redued hi-square is less than unity, it suggests that theerror bars are either systematially too large or that the model depends on toomany parameters given the quality of the experimental data.4.12 Maximum Entropy methodsA good introdution to Bayesian statistis and Maximum entropy (ME) hasbeen written by Jaynes [86℄, while [87, 88℄ are reviews of sattering relatedappliations of ME. The following is a heuristi introdution.Given an experiment that involves a measurement on a distribution, andyields as experimental result for the mean a and variane �2 of the distribution,whih distribution was measured? Clearly the question is ill-posed as no uniquedistribution an be spei�ed based on the knowledge of the mean and variane,however, a unique distribution exists that assumes the least amount of extrainformation ompared to the information we have. This is the maximum entropydistribution. From information theory [89℄ the relative entropy is de�ned asH[P;Q℄ = �Xi Pi log2(Pi=Qi) = � Z dxP (x) log2 �P (x)Q(x)� :



4.12. MAXIMUM ENTROPY METHODS 39In the ontext of information theory, this expression has the following in-terpretation: if a reeiver has a prior information given by the frequeny Qi ofsymbols/letters reeived in earlier messages, and reeived a new message withsymbol frequenies Pi, the relative entropy that the reeiver has obtained isH[P;Q℄, i.e. this is the number of bits of knowledge the reeiver has after re-eiving the message. This is almost always di�erent from the number of bitsin the message itself. The relative entropy an be interpreted as the averageof the information or �surprise�, when we observe the i'th symbol as given by� log2(Pi=Qi). If Pi=Qi is one it means that we are observing a partiular sym-bol with the expeted frequeny, and this is not a surprise, nor will we reeiveany new information. However, if Pi=Qi is large a partiular symbol is observedmore frequently than expeted, and we will be very surprised by its ourrene,i.e. we have reeived a lot of new information.Thus given the experiment whih provides prior knowledge of the mean andvariane, and assuming no prior knowledge about the shape of the distributione.g. Q(x) = 1, the entropy is given byH[P ℄ = � Z dxP (x) log(P (x)) + �0 (1� h1i)+�1 (a� hxi) + �2 �� � hDx2E� hxi2i� ;where hf(x)i = R dxP (x)f(x) is the expetation value of the funtion f(x). Herebase e is used instead of base 2 in the logarithm, whih makes no di�erene,as it orresponds to a rede�nition of the unit of information from a number ofbits (binary digits) to the number of base e digits. The three �'s are Lagrangemultipliers. The Lagrange multipliers represent the onstraints that the distri-bution should be normalised, and that the mean a and variane �2 orrespondto the known values. The distribution whih maximizes the entropy funtionalis given by the equation ÆH[P ℄=ÆP = 0 from whih, it is easy to show that thesolution is P (x) = N exp[�(x� a)2=(2�2)℄, i.e. a Gaussian distribution.
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Chapter 5Monte Carlo SimulationComputer simulation tehniques an be graded on a sale from purely stohastito purely deterministi algorithms. Deterministi algorithms, suh as Moleu-lar Dynamis (MD) simulate the trajetory of a system in phase spae. This isdone by solving the equations of motion numerially. MD simulations an beperformed on non-equilibrium systems and simulate transport properties. It ispossible to obtain time averages of all the properties of interests from a MDsimulation. Assuming that the sampling of the system is ergodi, then ensembleaverages are obtained. Typially MD simulations are done within the miro-anonial ensemble, but simulation of other ensembles are possible by modifyingthe MD algorithm. MD methods are limited by the small time steps requiredto perform an aurate numerial integration of the equations of motion, andobjets with rigid onstraints are omputationally di�ult to simulate.At the other end of simulation tehniques are stohasti algorithms, whihare based on the appliation of (pseudo) random numbers. A Monte Carlo (MC)simulation allows anonial ensemble averages to be obtained for interestingproperties. Whereas MD simulates the evolution of a system through the equa-tions of motion, a MC simulation de�nes a purely �titious dynami, whereeah state of the system has a number of possible �neighbour states�. The MCsimulation is performed by allowing the ative state to perform a random walkfrom neighbour to neighbour state. A neighbouring state to the ative stateis hosen randomly for eah iteration of the MC algorithm. The energy of theneighbour state is alulated, and ompared to the ative state. The step to theneighbour state is aepted if the neighbour state has a lower energy, however,if the energy of the neighbour state is higher than the ative state it is aeptedwith a probability exp[��E=(kbT )℄, where �E > 0 is the energy di�erenebetween the two states, kb and T are the Boltzmann onstant and the absolutetemperature. The aeptane riterion is known as the Metropolis riterion [90℄.The MC algorithm will perform a random walk, that visits a state ! with afrequeny proportional to the Boltzmann probability assoiated with that stateexp[�E[!℄=(kbT )℄. This is known as importane sampling, and requires onlythat the energy of an state an be alulated.The hoie of possible neighbour states of a partiular state is to some extentarbitrary, however, the hoie has to ensure an ergodi sampling of all on�gu-41



42 CHAPTER 5. MONTE CARLO SIMULATIONrations, whih is to say that any two states have to be onneted by a numberof neighbour steps. The hoie also has to ensure an asymptoti onvergenetowards an unique equilibrium ensemble of states, and this requires a balane,suh that the transitions into any state exatly equals the transitions out ofthat state, suh that no state ats as an absorber. Detailed balane, i.e. theprobability of hoosing neighbour state B from an ative state A must equal theprobability of hoosing neighbour state A from an ative state B, is a su�ientrequirement to ensure asymptoti onvergene.The hoie of neighbour states do not have any physial meaning, but alever design of neighbouring steps, for instane by taking rigid onstraints intoaount when designing the neighbour lass, allows the MC algorithm to roamthe on�guration spae in relative few iterations, whih makes a good samplingpossible with a limited number of steps.5.1 Overview of SimulationsWe have performed MC simulations on a single diblok opolymer mielle, withthe purpose of sampling the form fator as a funtion of a the number of tetheredhains, the length of hains, and the radius of the ore. The mielle was mod-elled as a ore with a number of semi-�exible hains tethered to the ore surfae.Spherial ores and ylindrial ores with hemispherial end aps have been sim-ulated. Chains were exluded from the ore region, and hains interated throughexluded volume interations implemented by plaing hard spheres along thehains.Beause hard sphere interations was used the energy of a partiular stateis either zero or in�nite depending on whether hains overlap or not, as a result,the energy is independent of the temperature, whih orresponds to the idealisedase of an athermal solvent. To ensure ergodi sampling of the miellar orona,three MC moves were used; pivoting moves were used to modify individualhain on�gurations, while two surfae moves were used to reorientate the hainand move it on the ore surfae. During the simulation a number of physialquantities was sampled suh as the sattering ontributions orresponding tothe inter-hain sattering F , the inter-hain sattering H, and the orona formfator amplitude Aor. We also sampled the single hain radius of gyration,the mean hain enter-of-mass distane from the ore, and the radial monomerpro�le.5.2 Models of Chains MoleulesPolymers are string-like moleules onsisting of many idential monomers boundby ovalent bonds. The bonds between individual monomers have a ertaintorsional potentials, and the monomers an have side groups, whih gives riseto loal steri hindrane for rotations. These loal interations gives rise to aertain sti�ness on length sales omparable to the monomer length sale [54℄.We model a polymer hain by n+ 1 verties linked by n segments of length l0.The angle between subsequent segments is �xed at a onstant value �, while the



5.3. CREATING A CHAIN 43dihedral angle wi an take any value in the interval [��;�℄ for any segment,where wi = 0 orresponds to a trans-on�guration. This semi-�exible modelprovides a good meso-sopi desription of polymers using an e�etive segmentlength and angle [91, 92℄.
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Figure 5.1: Illustration of a semi-�exible hain in trans-on�guration, the tail ofthe hain has been pivoted 180Æ about the i'th segment.A valene angle of � = 44:4153o was hosen, suh that the Kuhn lengthb = 6l0. In the long hain limit the radius of gyration of a �exible hain andsemi-�exible hain oinide. The freely rotation hain model an be regarded asa disrete version of the ontinuous Kratky-Porod hain model, whih is reahedin the limit L!1, l0 ! 0, � ! 0 for �xed L=b.Exluded volume interations was simulated by plaing hard spheres withradius � at eah vertex. The radius was hosen suh that �=b = 0:1, whih isknown to reprodue the binary luster integral of polystyrene in a good solvent[93℄.5.3 Creating a hainDe�ning the i'th segment vetor by ri = Pi+1 � Pi where Pi is the positionof the i'th vertex. We assume that the foot vertex P1 is given, along with thediretion r1. To de�ne a oordinate system, we need two vetors. We hoose arandom vetor R not parallel to r1 is hosen. Then a vetor orthogonal to r1 isonstruted by r? = R� � R � r1jRjjr1j� r1:A �titious zeroth segment vetor an onstruted using the orthogonal ve-tor by r0 = �l0 os � r1jr1j + l0 sin � r?jr?j : (5.1)The zeroth and �rst segment vetors de�ne a oordinate system from whihall subsequent segments an be added, and the �titious zeroth segment makesit possible to uniquely de�ne the dihedral angle of the �rst segment. In generalgiven the i � 2 and i � 1 segments the i'th segment an be onstruted with



44 CHAPTER 5. MONTE CARLO SIMULATIONa spei�ed segment length l0, segment angle �, and dihedral angle wi�1 of theprevious segment as follows: De�ne two auxiliary vetorsn1 = ri�2 � ri�1 and n2 = ri�1 � n1:n1 is orthogonal to the plane spanned by the two segment vetors, whilen2 lies within the plane, and points in the diretion of a trans on�guration.The three vetors fri�1;n1;n2g de�nes an orthogonal oordinate system. In thisoordinate system the i'th segment an be onstruted suh that the previoussegment has a torsion angle !i�1 byri = �l0 os � ri�1jri�1j + l0 sin ��os(!i�1) n2jn2j + sin(!i�1) n1jn1j� : (5.2)Here the dihedral angle is zero in the trans state, and the sign of the dihedralangle is de�ned in a right handed manner. Any hain on�guration is ompletelyspei�ed by the knowledge of r0, r1, the �xed segment length and angle, anda table of dihedral angles wi for i 2 f1; : : : ; n� 1g, while the hain position inspae is given by the knowledge of any vertex for instane the foot vertex P1,whih is �xed on the mielle surfae.This representation in terms of generalised oordinates suggests that an MDsimulation based on propagating the system using the Euler-Lagrange equation[94℄ would be more e�etive than using Newtons seond law and enforing theonstraints through a rattle or shake algorithm [95℄. A hybrid MD/MC algo-rithm has been proposed that uses a generalised oordinates representation of ahain[96℄. We have used a simple oordinate representation of all verties as thisfailitates the overlap hek between di�erent hains, and it is a natural hoiewhen sampling the miellar sattering.5.4 Creating a mielleA mielle onsists of a ore and a number of tethered hains. The tethered hainsare exluded from the ore and are not allowed to overlap. Chains are grownsimultaneously rather than by adding a single hain at a time. First all hainroots (P0;P1;P2) are generated until all hains have a root. During this phasethe P1 and P2 verties are heked for overlap with other roots, and the seondvertex P2 is heked for overlap with the ore. If an overlap is deteted the rootis reloated. No heks are made for the zeroth segment as this is not a physialsegment.Chain onstrution starts when all roots have been plaed and does notoverlap. Chains are grown by adding a segment to the shortest hain until allhains have the required number of segments. Everytime a segment is added theend vertex is heked for overlap with all other hains. If an overlap is deteted,the last 20 segments are removed. If this inludes the root, then the root is re-loated. During hain reation the dihedral angle is restrited to [�60Æ; 60Æ℄ asthis strethes the hains somewhat, and thus redues the rowding at the sur-fae. Chains are �exible enough, that they an be regrown around other hainsafter an overlap. While this proedure ensures that the initial mielle does not



5.5. PIVOT MOVE 45overlap, it produes a strongly biased initial on�guration. The on�guration isequilibrated by performing MC steps until on average 200 moves per degree offreedom have been aepted. The equilibration was monitored by sampling theaeptane rate, whih deays rapidly and stabilises when the orona reahesequilibrium. The equilibration was also monitored by sampling the radius of gy-ration and average hain enter-of-mass distane from the ore. These quantitiesare also seen to stabilise at the equilibrium values before the atual samplingstarts. During the equilibration phase the aeptane and rejetion frequenyof the three MC moves was monitored, and the exursion of the moves wasadjusted to obtain approximately 50% aeptane rate for the three moves.The probability of hoosing a move was hosen to be proportional to thenumber of degrees of freedom that is hanged by an aepted move, and thenumber of degrees of freedom of the miellar orona. Thus an aepted surfaemove will modify two degrees of freedom, either two surfae oordinates ortwo orientation angles. The pivot move (see next setion) hanges one degreeof freedom, a single dihedral angle. The probabilities for the di�erent types ofmoves was hosen as P (Surfae rotation) = P (Surfae translation) / 2Nand P (Pivot) / (n � 1)N where n is the number of segments, and N is thenumber of hains in the orona.5.5 Pivot moveNumerous moves have previously been proposed for sampling the on�gurationspae of an isolated hain both on a lattie and o�-lattie. Some examples arereptation moves, onerted rotation moves, and biased moves suh as hainremoval and regrowth of the Rosenbluth type [97, 98, 99℄. However, pivots movesused in the present work allows the semi-�exibility of the hains to be takendiretly into aount.Pivot moves was originally introdued for hains on a lattie [100, 101℄. Arandom site on the hain was hosen and the shortest half of the hain wastransformed with an element from of the lattie symmetry group. This leadsto a very large on�gurational hange, however, the probability for overlap isonsiderable, and as a result many attempted moves are rejeted, on the otherhand when a move is aepted, it has a major e�et on the hain on�guration.Madras and Sokal have shown that the pivot algorithm is ergodi, and that itis the most e�etive move known for sampling self-avoiding random walks on alattie [61, 101℄.The idea of the lattie pivot move an easily be generalised to o�-lattiesemi-�exible hains [102℄. For a hain in a miellar orona, a pivot move isperformed by pivoting the tail of a hain around randomly hosen segment, asonly the tail an be rotated due to the fat that the head of the hain is alwaystethered to the ore surfae. The result is that while only a single dihedral angleis hanged, the hain on�guration is very di�erent, and after a few perent ofthe segments have been pivoted an essentially new on�guration is reahed.Pivoting the hain about a segment i with an angle � is done by transformingall verties Pj for j 2 fi+ 2; : : : ; ng aording to



46 CHAPTER 5. MONTE CARLO SIMULATIONPnewj = eQ(�;Pi+1 �Pi)(Pj �Pi) +Pi:The transformation matrix that performs a rotation � around a diretiongiven by the i'th segment is given by eQ(�; r) = U(r)�1Rx(�)U(r); where Rx(�)is a rotation matrix about the x axis, and U(r) is the matrix of diretionalosines, that relates the oordinate system with the x axis along the i'th segmentto the lab frame. The diretional osines are given bya11 = rjrj � ex a12 = rjrj � ey and a13 = rjrj � ez; (5.3)where ex; ey ; and ez are the unit vetors de�ning the x; y and z axis in thelaboratory frame. The Matrix Q an be written [102℄eQ = S +A; (5.4)where the symmetri term is (denoting  = os�)S = 0B� a211 + (1� a211) a11a12(1� ) a11a13(1� )a11a12(1� ) a212 + (1� a212) a12a13(1� )a11a13(1� ) a12a13(1� ) a213 + (1� a213) 1CA ; (5.5)and the antisymmetri term (denoting Æ = sin�)A = 0B� 0 a13Æ �a12Æ�a13Æ 0 a11Æa12Æ �a11Æ 0 1CA : (5.6)In a polar representation of the hain the rotation is equivalent to !i = !i+�.5.6 Surfae movesTwo moves are required to move a hain, one reorientates the hain and anothermoves the hain foot point on the surfae of ore. The hain an be regarded asa rigid objet where the zeroth segment is transformed as the rest of the hain.This ensures that the torsional angle of the �rst segment stays onstant duringsurfae moves. The reorientation move is made by pivoting the hain an randomangle � about the foot vertex around a random diretion r asPnewj = eQ(�; r)(Pj �P1) +P1 for j 2 f0; : : : ; ng:For the speial ase of a spherial ore the surfae moves an be performedwithout the need for introduing a surfae oordinate system. The surfae moveis performed by pivoting the entire hain about the ore enter around a randomdiretion. Assuming that the enter of the ore is loated at the origin, this moveis given by



5.7. OVERLAP 47Pnewj = eQ(�; r)Pj:However, general moves on a non-spherial ore surfaes requires the intro-dution of a surfae oordinate system and knowledge of the Jaobian, as movesare required to produe an uniform sampling of the miellar ore surfae.For a lass of ore geometries the surfae move an be vastly simpli�edby noting that the mapping from ore surfae onto the insribed ylinder isarea preserving. This is true for spherial ores and hemispherial end-appedylinders. Thus a surfae move an be regarded as a projetion onto the insribedylinder, a move on the insribed ylinder surfae, and a projetion bak on theore surfae. This de�nes a hain translation that moves the foot point to anotherposition on the ore surfae. The problem of performing a surfae move, thatperforms an uniform sampling of a omplex surfae, has then been redued tothe simple problem of making an uniform sampling from a ylinder surfae.A move on a ylinder surfae an be omposed of a rotation around the axisof the ylinder, and a step along the axis ylinder. If the step ends up above orbelow the ylinder it an be re�eted bak on the opposite side of the ylinder.The projetion of suh a move orresponds to a move that translates a hain tothe opposite side of the north or south pole on the ore surfae.5.7 OverlapAfter a MC move the on�guration must be heked for overlap. Three di�erenttypes of overlap an our; hain overlap with itself, hain overlap with anotherhain, and hain overlap with the ore. Core overlap of a vertex (x; y; z) for ageneral rotationally summetri ore shape an be heked by x2 + y2 < R2(z)where R(z) a the ore ross setion at height z, whih for a sphere isRsphere(z) = qR2o � z2:Chain-hain overlap is done using the �zippering� algorithm [103℄. Considera situation where one vertex on one hain is being heked for overlap againstany vertex on another hain. If the diret distane between the two verties isd, and if the maximum diret distane between two verties at the ends of ann segment long segment is D(n), then the next vertex that has a possibility foroverlap is loated maxfn > 0jd � D(n) � 2� > 0g segments along the hain,where the diret end-to-end length of n hain segments is given byD(n) = ( l0 os( �2)n semi-�exiblel0n �exible :A naive algorithm for heking for overlaps within the same hain requiresO(n2) heks, but the Zippering algorithm requires only about n1:2 [103℄, whihvastly redues the number of distane omparisons neessary to hek a numberof hains for overlap. When heking for overlap between two verties on the



48 CHAPTER 5. MONTE CARLO SIMULATIONsame hain, a ertain number of neighbour verties are exluded from the om-parison, to avoid introduing rigidity. When the hard-sphere radius � is largerthan the segment length, a number of neighbouring verties will always be withinthe hard sphere, and the volume available to verties just outside an exludedvolume sphere is limited. The number of neighbours segments is hosen to allowthe hain to perform a 180Æ degree turn with radius � [91℄.5.8 Sampling satteringThe sattering ontributions ould be sampled by sampling the on�gurationallyaveraged pair-distane distribution 4�R2kP (Rk) for the k'th bin at radius Rk.Then alulating the sattering asF (q) �Xk �Rk4�R2k sin(qRk)qRk P (Rk);where �Rk is the width of the k'th bin. However, this is not a very e�etivemethod, as it requires O(N2) operations per sample, where N is the number ofhain verties. A better option would be to sample the on�gurational averageof the sattering given by F (q) = DPi;j sin(qrij)=(qrij)E for all the distanesrij between verties i and j. This proedure requires O(N2M) operations persample, where M is the number of q values that are sampled. The satteringan also be obtained as F (q) = *������ NXj e�iq�R�j ������2+�o ;here both an orientational and on�gurational average are to be performed. Andthe orientational average has to be performed �by hand� i.e. by sampling thesattering along D di�erent q diretions. This requires O(NDM) evaluationsof a omplex exponential funtion. The major di�ult is how to evaluate theexponentials e�iently.Frenkel et al. [104℄ have suggested to use qlkm = �2�lL ; 2�kL ; 2�mL � where Lis the longest length sale that is interesting. As all q vetors are loated on aubi lattie, the exponentials an be alulated using Fast Fourier Transforms(FFT), whih is a very e�ient method for alulating exponentials on the formexp(i�n) by exploiting reursive relations between di�erent integers n. However,by virtue of the lattie the number of q vetors required by the FFT tehnique tosample sattering from qmin to qmax is D = qmax=qmin. This shows that if fourdeades of q values are to be sampled 104 FFT samples have to be performed,and most of these will be at high q values.Inspired by the FFT tehnique, we have hosen a hybrid approah to alu-lating a few of the omplex exponentials diretly, and using symmetry propertiesto derive the rest. The goal is to loate qn n 2 f1; : : : ;Mg values approximatelyequidistant on a logarithmi sale between qmin and qmax.The ideal distribution isqon = 10(log qmax�log qmin) nM+log qmin : (5.7)



5.9. CORRECTION OF POSITIONS 49By tweaking the hoie of qn values slightly we an optimise the evaluationof the sattering ontribution from the j'th vertex to the qn'th sattering valuealong the qe diretion. Our goal is to evaluatee�iqnqer�j = e�iqn where  = qe � rj ;for all M values of qn for all verties, and for D di�erent diretions qe to obtainthe orientational average.In the following we will onentrate on alulating the omplex value ofexp (�iqn) in the ase where exp(�iqm) has already been alulated for allm < n. If qm exists suh that qn = 2qm then exp(�iqn) = exp(�iqm)2(the double angle formula). Sine we have previously evaluated exp(�iqm),we only need to square that number. If qm; qp exists suh that qn = qm +qp then exp(�i�qn) = exp(�iqm) exp(�iqp) (the addition formula). Sineboth exponentials have previously been evaluated, we only need to alulate theprodut of two known omplex numbers. Thus by an advantageous hoie of theqn values, we an use symmetry properties of the exponentials to onvert theminto simple produts of known omplex numbers. The higher order symmetryproperties require more algebrai operations, and do not provide a signi�antoptimisation.The atual distribution of qn's are hosen as to minimiseE[q1; : : : ; qM ℄ = k � Mln(10) (log qmax � log qmin)�2 MXi=1 �qi � q0i �2(q0i )2 (5.8)+�Nal + Nadd + ÆNdouble; (5.9)where Nal,Nadd, and Ndouble is the number of exponentials that require diretevaluation, or an be dedued using the addition formulae, or formulae for thedouble angle, respetively. Thus M � Nal +Nadd +Ndouble. The weights �; ;and Æ are hosen to represent the duration of the respetive numerial operation,and we have used � = 1 and  = Æ = 0:1. The �rst term is a harmoni term,that determines how large deviations from a perfet logarithmi distributionshould be allowed in order to speed up the evaluation. Sine the distributionis on a logarithmi sale, we have to divide by the loal length sale, whih isgiven by the parenthesis and the denominator. The onstant k should be hosenso small that the ordering qm < qn when m < n is ensured. We have usedk = 0:01. This penalty funtional is easily minimised by a simulated annealingquenh with moves that shift qn's, whih require trigonometri evaluations intoqn's, that an be evaluated by simple algebrai operations on known numbers.If M is huge, are must be taken to avoid trunation errors in the evaluation.In our implementation only about 10% of the omplex exponentials need to beevaluated diretly.5.9 Corretion of positionsThe repeated appliation of pivoting moves introdue numerial errors in thevertex positions, and as a result hains are periodially reonstruted using



50 CHAPTER 5. MONTE CARLO SIMULATIONthe hain onstrution algorithm based on tabulated dihedral angles, whih areupdated after eah aepted pivot move. The entire hain is also translated so thefoot vertex is on the ore surfae, this avoids di�usive behaviour of hains awayfrom the ode surfae due to trunation errors due to the repeated appliation ofsurfae moves. The onstrutive hain orretion algorithm is far more e�ientthan the iterative orretion algorithm of Stellman and Gans[102℄. While hainonstrution requires few evaluations per segment, the orretion algorithm ofStellman and Gans requires the solution of a possible singular or ill-onditioned3x3 matrix equation per segment.After all the hains on a mielle have been orreted, the miellar orona isheked for any orretion indued overlaps, and equilibrated until these havereahed a state without overlap. However, this is very unlikely and has neverbeen observed in pratie. The maximal deviations of segment length, valeneangle, and dihedral angle were monitored during the simulations, and found tobe below 10�12.5.10 A pratial remarkThe simulator has been implemented in C++ [105℄. C++ supports the ObjetOriented Programming paradigm, whih emphases ode reuse, and the isolationof funtionality in di�erent modules with well de�ned interfaes. The simulatorwas implemented using a number of objets that provides di�erent types offuntionality.Four objets was required for the mielle simulator. An objet representeda single hain, and funtionality suh as pivot moves and hain orretions,another objet represented the ore, and implemented funtionality for the oregeometry, heking for ore overlap, and foot vertex generation. A mielle objetinherited the properties of an array of hain objets and a ore objet, and a MCobjet inherits all the properties of a mielle, and adds funtions for samplingdata and the basi MC algorithm.The Monte Carlo algorithm only needs to know about the energy of on�gu-ration and when to sample and save data. A mielle onsists of a ore and somehains. But the mielle objet does not need to know the ore geometry nor howhains on�gurations are represented. However, the mielle objet has to supplya neighbour move and a funtion that an alulate the energy to the MonteCarlo algorithm, and supply some way of reating a mielle. The hain objetontains information about the hain on�guration, the pivoting algorithm, andhain orretion. The ore objet ontains information about the ore geometry,and routines for performing surfae moves, reating foot verties, and hekingfor vertex ore overlaps. Thus when the Monte Carlo algorithm wants to seleta new neighbour state, it alls a neighbour funtion supplied by the mielle ob-jet, this funtion selets if it should be a hain pivot move or a surfae move.Pivots moves are performed by seleting an angle and a hain, and alling thepivot funtion supplied by that hain objet. Surfae moves are performed byrandomly seleting a hain and alling a funtion in the ore objet that suppliesa vetor. This vetor translates the foot vertex of the hain to another point on



5.11. POSSIBLE IMPROVEMENTS 51the ore surfae, and the atual translation is performed by a funtion in thehain objet.Strit adherene to an objet oriented approah allows a lean separationof funtionality into di�erent objets. This has an enormous advantage. If, forinstane, a new ore geometry has to be implemented, only the ore objet needsto be modi�ed. If the mielle orona onsists of hains of di�erent length onlythe mielle objet needs to be modi�ed. Objet Oriented Programming makesit very easy to modify the simulation ode.5.11 Possible improvements5.11.1 Overlap heksThe overlap hek use the zippering algorithm when testing for overlap be-tween two di�erent hains say hain A and B. Currently, this is implementedby omparing all verties on hain A by zippering along the verties of hainB. However, as the positions of eah vertex, that is heked during the over-lap hek, is known, it is possible for a vertex on hain A and pair of vertieson hain B to alulate the losest possible separation between the interveninghain segment and the vertex on hain A. And the minimal separation distanebetween any site on hain B an be used as the ontour length of the step alonghain A. This double zippering algorithm would probably lead to a signi�antinrease of e�ieny of the overlap hek for many hain systems espeially forlong hains.5.11.2 ReptationThe pivoting algorithm would have a low aeptane rate for oronas with verylarge surfae overages, if the maximum exursion of the pivot angle was notdynamially adjusted during the equilibration phase to yield a 50% aeptanerate, the reason being that a small rotation about a segment lose to the orean yield a very large exursion at the end of the hain. Reptation moves worksby utting the head o� a hain and gluing it to the tail of the hain, thatway hains an �reptate� through the voids between other hains. Reptationmoves are very e�ient for sampling on�gurations in polymer solutions at highonentrations. A naive reptation move in a miellar orona ould be performedby utting the head/tail of a hain, gluing it to the tail/head, and translatingthe new hain head suh that it touhed the miellar surfae. Sine the headenvironment is di�erent from the tail environment the riterion of mirosopireversibility will not be ful�lled as head to tail moves will be aepted with alarger probability than tail to head moves. However, by utting the tail of onehain and the head of another hain, and ross transplanting the head to the tailof the other hain, and tail to the head of the �rst hain, and then translatingthe two hains suh that they are still tethered to the hain a reptation moveis made that is probably mirosopi reversible as the operation is ompletelyhead/tail symmetri. However, it remains to be seen whether suh a move anbe formulated for semi-�exible hains.
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Chapter 6Summary of artilesSmall-angle sattering is an ideal tehnique for obtaining information aboutmaro-moleular strutures suh as blok opolymer mielles, however, expres-sions for form fators and struture fators are required for a reliable interpre-tation of the sattering data obtained from sattering experiments. The topi ofthe �rst three artiles is the formulation of an expression for the form fator ofa mielle with a spherial ore. The main di�ulty is howto inlude the e�etsof exluded volume interations on the orona form fator. The fourth paperintrodues a general formalism for the form and struture fators of generalpolymer strutures, suh as star polymers with arms of blok opolymers, andmielles with arbitrary ore geometries. In the formalism it is assumed that thedi�erent subunits do not interat with eah other, however, a method of how toinlude exluded volume e�ets at the level of a linear polymer is presented.A diblok opolymer mielle onsists of a dense ore surrounded by thedissolved hains forming a di�use orona. The struture of the miellar oronadepends on the ontour length of the tethered hains L, the number of hainsN , and on the ore radius Ro. From these three quantities three dimensionlessnumbers an be derived that quantify the struture of the miellar orona: Nthe number of hains, � = Rg=Ro the e�et of surfae urvature on the oronastruture, and � the redued surfae overage. The redued surfae overage isde�ned as � = N�R2go=[4�(Ro + Rgo)2℄, here Rgo is the unperturbed radiusof gyration, as opposed to Rg, whih is the atual radius of gyration. In theexpression it was assumed that the enter-of-mass of a hain is displaed byapproximately a distane Rgo from the ore surfae. As a result, the e�etiveore area is 4�(Ro +Rgo)2, and the ross setional area of the hains is �R2go .The quantity � is expeted to be the orona analog of the redued on-entration =� = 4�R3go�m=3, where �m is the number density of polymers.For a polymer solution =� � 1 signi�es a dilute solution. In whih polymersbehave as a gas of hard spheres with radius Rg. The on�guration of hainsdepend only on the hain entropy, whih favours random-walk on�gurations,and interations within the same hain. Entanglement between di�erent poly-mers are energetially unfavourable as it redues the on�gurational degrees offreedom, i.e. the entropy. For =� � 1 (and still not a melt) the solution isin the semi-dilute regime, whih is partiular to hain moleules and is hara-53



54 CHAPTER 6. SUMMARY OF ARTICLESterised by the entanglement of hains. Thus a semi-dilute solution of polymersonsists of a transient network of intermeshed hains. The harateristi size ofa dilute solution, the radius of gyration, is replaed by the orrelation length�. In a semi-dilute network a single hain an interat with many neighbour-ing hains, and the orrelation length is the length sale on whih onnetivityinformation persists [21℄. On length sales smaller than the orrelation lengthinterations are predominantly exluded volume interations between sites onthe same hain, and above the orrelation length no information about hainonnetivity persists.The orona of a mielle onsists of polymers, but these are tethered by oneend to the miellar ore, and if the miellar ore is rystalline or glassy thetethering points will be �xed on the ore surfae. For � � 1 hains in theorona are far from eah other, and interations between di�erent hains arerare. As a result exluded volume interations between sites on the same hainand ore expulsion in�uene the on�guration, and the orona will be in themushroom regime. This is similar to the situation of a dilute polymer solutionwhere =� � 1. For � � 1 the hains form a polymeri brush where hains arestrongly strethed away from the surfae, i.e. the orona will be in the brushregime. No analogy exists for an ordinary polymer solution, as the ordering isindued by the presene of a surfae. A broad rossover exists between diluteand semi-dilute solute behaviour, and a similar broad rossover exists betweenthe mushroom and brush regimes.It was shown in the theory hapter that the normalised sattering [Fmielle(q =0) = 1℄ for a mielle with a spherial ore is given byFmielle(q) = (�h + �o)�2 ��2hFor + �2o�2 + 2�h�oAor�� : (6.1)For(q) is the orona form fator, �2(q) the ore form fator, Aor(q)�(q) is aorona-ore interferene funtion, and �h and �o is the total exess satteringlengths of the orona and ore, respetively. As the ore is assumed to be spher-ial and homogeneous the form fator amplitude is �(qRo) = 3[sin(qRo) �qRo os(qRo)℄=(qRo)3 [78℄. The ore form fator ontains information aboutthe ore radius, however, this information is also present in the orona form fa-tor amplitude Aor(q), and as a result the three �rst papers fous on the oronaform fator and form fator amplitude.In the theory setion it was shown that the orrelations of a polymer solutionan be separated into intra-hain orrelations and inter-hain orrelations. Ananalogous separation an be performed on the orona form fator, and as shownin the theory setion, this yields the orona form fator expressed through theintra-hain sattering F and inter-hain sattering H weighted asFor(q) = 1NF + N � 1N H: (6.2)The harateristi length sale of intra-hain orrelations is omparable tothe radius of gyration, whih is typially smaller than the inter-hain orrela-tions. The harateristi length sale of inter-hain orrelations is omparable



55with the radius of the ore. Typially the intra-hain sattering ontributionwill dominate at large q values, while the inter hain sattering ontributionwill dominate at low q values, due to the di�erent harateristi sales of theorrelations.The orona form fator an also be separated into the ontributions fromon�gurationally averaged density and from density �utuation orrelations.The sattering ontribution due to the average density is the orona form fatoramplitude Aor(q) = R10 dr4�r2 sin(qr)qr �(r), where �(r) denotes the radial pro�leof the orona. The sattering ontribution due to density �utuation orrelationsis denoted Fflu(q). Using this separation, the sattering orona sattering anbe expressed as Fsol:prof(q) = 1N Fflu + N � Fflu(q = 0)N A2or: (6.3)Here the �rst term is denoted �utuation sattering, while the seond is de-noted pro�le sattering as it only depends on the radial pro�le. The peuliarweighting between the two terms is due to the fat that the �utuation sat-tering is not normalised in the forward diretion. Provided an exat expressionfor the sattering due to density �utuations Fsol:prof(q) � For(q). However, atpresent no analytial expression is available for the �utuation sattering ontri-bution in the ase of miellar orona, and as a result it has been approximatedby an RPA expression Fflu(q) = F(q)=[1 + �F(q)℄, whih desribe the �utu-ation sattering of a dilute/semi-dilute polymer solution. The exluded volumeparameter � is related to the apparent seond virial oe�ient of the solution as� = 2A2(�)�. The expression Fsol:prof(q) has the interpretation of the satter-ing one would expet from a dilute/semi-dilute polymer solution with a radialmonomer pro�le �(r), and it is denoted solution pro�le sattering.The �utuation sattering will dominate the sattering at large q values,as density �utuations orrelations are expeted to be short ranged, while thepro�le sattering will dominate at small q values. All the ontributions to theorona sattering are shown in �gure 6.1. The pro�le sattering (/ A2or), and theinter-hain sattering H(q) dominates at small q values, but they are rapidlydeaying funtions. The intra-hain/�utuation sattering ontribution domi-nates at high q values as expeted. The inter-hain sattering osillates aboutzero, the absolute value is plotted and eah sign hange leads to an invertedpeak. The orona form fator is the sum of intra-hain and inter-hain satter-ing, and as a result the minima/maxima of the orona form fator orrespondto minima/maxima of the inter-hain sattering. The minima/maxima of theorona form fator orrespond to minima/maxima of the pro�le sattering, andthe height of the minima an be seen to be given by the �utuation satteringSingle hain properties suh as radius of gyration, the hain length, and theKuhn length an be obtained from the intra-hain sattering F(q). The Haus-dor� dimension dH of the hains an also be determined, and arry informationabout the hain onnetivity statistis. The interpretation of the inter-hainsattering H(q) is more di�ult, as it has a very omplex q dependene, but itdepends on the orona pro�le, as well as interations between di�erent hainswhih introdue a �orrelation hole� [20, 21℄. The pro�le sattering ontribution
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Figure 6.1: The ontributions to the orona form fator appropriately saled forthe standard mielle N = 44, L = 8:33b and Ro = 3:33b.(/ Aor(q)2) is simply the sattering one would obtain from a ore-shell modelof the orona, and it only depends on the radial pro�le, hene the radial pro�lean be obtained from this term. The �utuation sattering is aused by hainonnetivity, hain-hain interations, and ore expulsion, and arries thermo-dynami information suh as the osmoti ompressibility and apparent seondvirial oe�ient of the orona.A omparison of eq. (6.2) and eq. (6.3) shows that the sattering due tointeration-indued orrelations between di�erent hains have been shifted fromthe inter-hain sattering ontribution into the intra-hain sattering, thus pro-duing the �utuation sattering term, while leaving the pro�le sattering on-tribution.6.1 Artile IThe intra-hain, inter-hain, and form fator amplitude (F;H; and Aor, respe-tively) sattering ontributions an be obtained diretly from omputer simu-lations of the miellar orona as shown in the hapter on Monte Carlo (MC)simulations. Computer simulations allow the partial sattering ontributions,as well as the single hain radius of gyration, and the radial pro�le �(r) to besystematially investigated as funtion of the parameters hain length, numberof hains, and ore radius denoted L;N; and Ro, respetively. Simulations analso be performed with and without exluded volume interations for di�erentmodels of hains, suh as �exible and semi-�exible hains. A standard mielle



6.1. ARTICLE I 57was hosen having N = 44; L = 8:33b; and Ro = 3:33b, where the Kuhn lengthb is used as length sale. Eah of these three parameters was varied in turn,while keeping the remaining two �xed at their referene values. The range ofvariation was hosen to orrespond to a range of � values from 0:01 to about�ve. The radius of gyration diretly depends on the hain length, but it has onlyan indiret dependene on the number of hains or the ore radius due to thee�ets of hain strething. The surfae urvature � = Rg(L)=Ro is essentially�xed when the number of hains is varied, as hain strething is negligible inthe simulated range.Artile I ontains a qualitative disussion on how the orona form fatorand form fator amplitude depend on these three parameters with and withoutexluded volume interations. From the MC simulations it is seen that intra-hain sattering is a slowly deaying non-osillatory funtion, while both theinter-hain sattering and orona form fator amplitude are rapidly deayingand osillating funtions. Varying the number of hains has a large impat on theorona form fator, as osillations beome apparent as the number of hains isinreased. This is aused by the number of hains dependent weighting betweenthe osillatory intra-hain sattering ontribution and the non-osillating singlehain ontribution. However, the phase of the osillations of the orona formfator and form fator amplitude is essentially unhanged, when varying thenumber of hains. This is onsistent with the observation that the orona widthis essentially unhanged, when the number of hains is varied.Inreasing the hain length simultaneously inreases the width of the orona,i.e. shifts the orona away from the ore enter, this results in a shift towardssmaller q values of the orona form fator amplitude osillations. Dereasingthe ore radius shifts the orona loser to the ore, and a orresponding shiftof the form fator amplitude osillations towards larger q values are observed.This behaviour of the osillations an be understood by the de�nition of theorona form fator amplitude as the Fourier transform of the radial pro�le. It isalso apparent that the osillations of the orona form fator are redued as thesurfae overage is inreased. This is a urvature e�et that ours when � ' 1.Figure 6.2 shows the saled ontributions to the orona form fator fromthe intra-hain and inter-hain sattering, and it is apparent that the osilla-tory behaviour is replae by a negative power law-like behaviour, while a singleseondary peak remains for simulations with a large number of hains. A broad-ening of the seond seondary peak of the form fator amplitude is observed formielles with a large number of hains attahed, while a broadening of the �rstseondary peak is observed for mielles with large ore radius or long hains.This broadening is probably due to the di�erent pro�le shapes obtained for alarge number of hains or a large urvature �.Artile I also ompares the orona form fator and form fator amplitudefrom simulation with and without exluded volume interations but with oreexpulsion. For simulations without interations the inter-hain sattering is re-lated to the orona form fator amplitude as H(q) = Aor(q)2. For low surfaeoverages no di�erene is observed between simulations with and without ex-luded volume interations as expeted, however, at high surfae overages a
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Figure 6.2: Saled F and H ontributions to For for simulations varying hainlength L = 4b,13:67b and 38:17b (from top to bottom), the simulation withN = 327 is shown for omparison. The inter-hain sattering H hanges signand the absolute value is plotted, and eah inverted peak orresponds to a signhange, and the powerlaw tail has a negative sign.lear derease in the orona form fator an be seen for simulations with in-terations. A shift of the form fator amplitude osillations towards smaller qvalues is observed for simulations with exluded volume interations omparedto simulations without exluded volume interations for large surfae overages.This is onsistent with a strething of the orona away from the ore due to ex-luded interations. As the hain length of the standard on�guration is short,no exluded volume e�ets are observed on the intra-hain sattering exept forthe longest hains where a di�erent power law behaviour are observed at highq values for the orona form fator, where the intra-hain sattering dominates.This is aused by the exluded volume interations modifying the (qRg)�dH be-haviour from dH = 2 onsistent with a random walk to dH = 1:70 onsistentwith an exluded volume hain.The model due to Pedersen and Gerstenberg [106, 107℄ provides expressionsfor F; S; and Aor as F(q;Rg) = FDebye(qRg);Aor(q) = sin[q(Ro + dRg)℄q(Ro + dRg) A(qRg);and



6.2. ARTICLE II 59H(q) = A2or(q):Here the form fator amplitude of a �exible non-interating hain isA(qRg) =[exp(�x) � 1℄=x with the abbreviation x = (qRg)2 [108℄. This model inludesthe e�ets of onnetivity in the sattering, but neglets hain expulsion fromthe ore region, however, this an be emulated by arti�ially shifting the hainsaway from the ore surfae. The shift is ontrolled by the d parameter. Com-paring eq. (6.2) and eq. (6.3) with the Pedersen-Gerstenberg model expressionsshows that Fflu(q) = F(qRg) and � = 0, as a result the A2(�) = 0, whihis onsistent with the fat that hain-hain interations are negleted in thismodel.A modi�ation to the model due to Pedersen and Gerstenberg is presented inartile I, where the hains are shifted away from the miellar ore, but onnetedto the ore surfae by a rigid radially pointing rod.The main topi of artile I is to explore to what extend the two models an beused to analyse the sattering data from the MC simulations, whih inlude boththe e�ets of exluded volume interations as well as semi-�exibility. Comparingthe model due to Pedersen and Gerstenberg to the modi�ed model shows thatthe modi�ed model provides more aurate estimates of the hain enter-of-massdistane from the ore radius, while the Pedersen-Gerstenberg model providesa more aurate estimate of the radius of gyration. The hain enter-of-massdistane is estimated by �tting the radial pro�le, and the addition of a rodan be seen to provides better �ts of the orona form fator amplitude. This isattributed to the improvement of the radial pro�le due to the addition of a rodsetion.The onlusion is that for � < 1 the Pedersen-Gerstenberg model and themodi�ed model provide aurate estimates for the radius of gyration and oreradius, however, at larger surfae overages larger deviations beomes apparentbetween parameter values estimated by �ts and the true values sampled duringthe simulations. While large deviations exist for � > 1 the �ts still providesreasonable results.6.2 Artile IIArtile II presents a self-onsistent analysis of the orona form fator For(q)and the solution pro�le sattering Fsol:prof (q). All terms in the orona formfator and solution pro�le sattering are obtained from the MC simulations,when the RPA expression is used for the �utuation sattering Fflu(q). Hene,the orona form fator and solution pro�le sattering an be ompared withoutintroduing any model expressions for intra-hain sattering and radial pro�le,and this omparison provides a way of investigating the validity of the RPAapproximation for the �utuation sattering.The intra-hain, inter-hain and orona form fator amplitude F;H; andAor are known from simulations. The exluded volume parameter an be ob-tained by letting For(q) = Fsol:prof(q), and sine Aor(q) osillates about zero,



60 CHAPTER 6. SUMMARY OF ARTICLESa value q0 an be hosen, suh that Aor(q0) = 0. Then the exluded volumeparameter is � = (N � 1)H(q0)F(q0) [F(q0) + (N � 1)H(q0)℄ : (6.4)Data are sampled at disrete q values, and a linear interpolation was usedfor �nding the smallest value q0 where Aor(q0) = 0, as well as estimating valuesH(q0) and F(q0). Error bars on � was estimated by alulating the variane ofthe ensemble of � values onsistent with the error bars on the sattering data[82℄. The orona form fator amplitude has several minima in general, and thesmallest q0 value is hosen as the inter-hain sattering typially has the smallesterror bar at low q values.
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Figure 6.3: Comparison between Fflu as obtained from simulations, andFRPA = F=(1 + �F) using the intra-hain sattering F from omputersimulations. The exluded volume parameter � are obtained from eq. (6.4).Curves are from top to bottom simulations varying number of hains N =3; 66; 131; 327, varying ore radius Ro = 27:78b; 9:44b; 2:53b; 1:48b (shifted downone deades), and varying hain length L = 2b; 8:33b; 13:67b; 38:17b (shifteddown two deades).Based on the exluded volume parameter, the �utuation sattering on-tribution Fflu an be obtained from simulations and ompared with the RPAapproximation using simulation data for the intra-hain sattering F. This isshown in �gure 6.3, and there is an exellent agreement between the two ex-pressions for the �utuation sattering.A similar exellent agreement is is obtained between the orona form fator



6.2. ARTICLE II 61and the solution pro�le sattering for the simulation sattering as shown in�gures 6.4, 6.5, and 6.6. This validates our approximation of using an RPAexpression for the �utuation sattering ontribution. From the �gures 6.4, 6.5,and 6.6 it an be seen that the �utuation sattering Fflu de�nes the depthsof the minima of the solution pro�le sattering, and it an also be seen that thepro�le sattering dominates the forward sattering as expeted. The forwardsattering due to density �utuation dereases with inreasing surfae overageonsistent with the onentration dependene of the sattering from an ordinarypolymer solution.

10
-1

10
0

10
1

qb

10
-2

10
-1

10
0

10
1

10
2

Figure 6.4: For (thik lines), Fsol:prof (symbols), and Fflu (thin dashed line)varying number of hains N = 3; 8; 22; 44; 87; and 131, orresponding to � =0:05; 0:13; 0:36; 0:72; 1:43 and 2:15 (irle, box, diamond, star, plus and rossfrom bottom to top). The urves are normalised to oinide at large q values.This is the reason why the orona form fator was seen to derease in ar-tile I, when omparing simulations with and without interations. Withoutexluded volume interations Fflu(q) = F(qRg) and H(q) = A2or(q), while inthe presene of exluded volume interations the �utuation sattering ontri-bution dereases and the inter-hain sattering is modi�ed due to the presenseof the �orrelation hole�..For an ordinary polymer solution it is predited that the exluded volumeparameter has a universal dependene on the redued onentration as � /(=�)f(=�), where f(x) is some funtion, that is onstant for small x [73℄.Plotting the exluded volume parameter � against � as in �gure 6.7 showsthat the data points falls approximately on a power law relation �(�) = ���with � = 1:35 � 0:02 and � = 0:95 � 0:02. That exluded volume parameters
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Figure 6.5: For (thik lines), Fsol:prof (symbols), and Fflu (thin dashed line)varying ore radius Ro = 1:48b; 2:53b; 4:94b; and 9:44b, orresponding to � =0:13; 0:36; 1:07; and 2:10 (irle, box, diamond, and ross from bottom to top).from simulations varying the number of hains, hain length and ore radiusollapses on a ommon urve, shows that the redued surfae overage � isthe harateristi redued parameter whih desribes the orona interations.Note the grafting density N=(4�R2o) is expeted to be harateristi parameterin the brush regime. The deviations observed at large and small overages areattributed to a weak dependeny on the number of hains and surfae urvature.Deviations are also observed for simulations with only two and four statistiallyindependent segments.As shown in the theory hapter a very simple relation exists between the�utuation sattering and the osmoti ompressibility. The ompressibility �ful�ls � = F�1flu(q = 0) = 1 + �, and thus the deviations of � at low surfaeoverages are dominated by one. The result is a universal behaviour of theompressibility for surfae overages, exept for large surfae overages wheredeviations are apparent. These are attributed to the e�ets of the number ofhains and surfae urvature on the orona struture.The solution pro�le sattering expression Fsol:prof using the RPA expres-sion for the �utuation sattering ontribution has the interpretation of beingthe sattering from a dilute/semi-dilute solution with a radial pro�le. The self-onsistent analysis shows that the solution pro�le expression provides an exel-lent desription of the orona form fator. On the basis of the agreement betweenthe solution pro�le sattering and the simulated sattering is we onlude thatthe orona of a mielle an be regarded as a polymer solution with a ertain
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Figure 6.6: For (thik lines), Fsol:prof (symbols), and Fflu (thin dashed line)varying hain length L = 2b; 4b; 13:67b; and 38:17b, orresponding to � =0:16; 0:35; 1:11; and 2:35 using (irle, box, diamond, and ross from top tobottom).radial pro�le. As the orona width is omparable to the radius of gyration theorona is quasi-two dimensional.6.3 Artile IIIWhile the self-onsistent analysis validates that the solution pro�le expressionreproduing the simulated sattering, it does not on�rm that the solution pro�leexpression an be used for estimating parameters for physial parameters ofinterest when analysing experimental data. Hene, the aim of the artile III isto formulate expressions for Fflu and Aor whih an be used to extrat physialparameters, suh as the radius of gyration, the exluded volume parameter �,and the radial pro�le for a mielle by �tting experimental data. For Fflu(q) thefollowing equations was usedFflu(qRg) = FDaniels � q2R2ge(L=b)�1 + �FDebye(q2R2g) ; (6.5)FDaniels(x) = FDebye(x) + b15L �4 + 7x�1 � (11 + 7x�1)e�x� ;
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Figure 6.7: The osmoti ompressibility � plotted against redued surfae ov-erage for simulations varying number of hains (irle), varying hain length(box), and varying ore radius (diamond). The inset shows the exluded volumeparameter � plotted against redued surfae overage. The line in the inset isthe power law �(�) = 1:35�0:95 and the orresponding osmoti ompressibilityis shown as the line on the �gure.FDebye(x) = 2[x� 1 + exp(�x)℄x2 ;and e(n) = 1� 32n + 32n2 � 34n3 �1� e�2n� :The equation is based on the RPA expression, but uses a hain form fatorbased on the Daniels distribution in the denominator, while using the Debyeform fator in the numerator. This expression has been shown to provide a quiteaurate desription of the sattering from a semi-dilute solution of semi-�exiblepolymers [92℄. The radius of gyration in the Daniels form fator is orreted bythe Kratky-Porod expansion fator due to semi-�exibility, whih was desribedin the theory setion. The parameters are Rg, the radius of gyration, and �.The exluded volume parameter, the ratio b=L was �xed at the value of thesimulation, in order to redue the number of �t parameters.The orona form fator amplitude is the Fourier transform of the radialpro�le, and three radial pro�les was used. The �rst is a Box with a Gaussiantail (abbreviated BoxGauss) and given by
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'BoxGauss(r) = 8><>: 0 r < RoB Ro � r < RhB exp ��(r �Rh)2=(2s2)� Rh � r :The last two pro�les are two Maximum Entropy pro�les where knowledge ofthe �rst two (abbreviated the ME2 pro�le) or three momenta (abbreviated theME3 pro�le) was assumed, respetively. The radial pro�le is given by'ME(r) = ( 0 r < RoB exp [�Pmn=1 an(r �Ro)n℄ r � Ro ;where B is a normalisation onstant. For both pro�les it is assumed that nohains enter the ore region. While the BoxGauss pro�le is an arbitrarily hosenempirial pro�le, the maximum entropy pro�les are less arbitrary. As arguedin the theory setion, a maximum entropy pro�le is the least biased pro�leonsistent with the requirements that hains do not enter the ore region, thatthe pro�le is normalised, and that we posess knowledge of �rst m moments.Expressions for Aor(q) orresponding to the BoxGauss and ME2 pro�les (m =2) are given in the third artile, while the form fator amplitude orrespondingto the ME3 pro�le (m = 3) is obtained by numerial integration.The simulation results for For(q) and Aor(q) were simultaneously �ttedby the orresponding expressions for Fsol:prof (q) and Aor(q), where the oronaform fator amplitude were derived from the BoxGauss, ME2, and ME3 radialpro�les. The radius of gyration, the exluded volume parameter, and the twoor three parameters required by the radial pro�le were �tted. For � < 1 all �tsprovides very similar estimates of the �t parameters for the three pro�les, andthe pro�les estimated by the �ts are in good agreement with eah other and thesimulated data. For � > 1 the �ts using the ME3 pro�le provides signi�antlybetter �ts ompared to the BoxGauss and ME2 pro�les. This improvement ofthe orona sattering �ts is diretly related to the improvement of the �ts ofthe form fator amplitude. Exellent agreement was also obtained omparingthe radius of gyration and radial pro�les obtained from simulations to thoseestimated by the �ts. The �(�) dependene obtained from �tting � is similar tothat obtained from the self-onsistent analysis, however, with slightly modi�edonstant and exponent: � = 1:42 � 0:03 and � = 1:04 � 0:02. This di�erene isattributed to systemati e�ets aused by the expressions used for the �ts.Artile II and III demonstrate that the expression for the solution pro�lesattering provides an aurate desription of the miellar orona sattering,and that the expression an be used to obtain reliable estimates of the physialparameters: the single hain radius of gyration, the exluded volume parameter,and the radial pro�le. From the exluded volume oe�ient thermodynamiinformation about the orona an be obtained from sattering experiments, justas for a polymer solution. The di�erene is that for a polymer solution all theobserved sattering is due to Fflu. Tethering hains to the ore has the e�et ofreating an additional A2or(q) sattering ontribution due to the radial pro�leof the polymer layer as it is on�ned to the miellar surfae, and this sattering



66 CHAPTER 6. SUMMARY OF ARTICLESdominates in the forward diretion where the value Fflu(q = 0) is of partiularinterest.6.4 Artile IVArtile IV presents a formalism for alulating the form fator and inter-partilestruture fator of various strutures, suh as triblok opolymers stars, andmielles with arbitrary ore geometries. The artile proves that the form fatorof a omposite partile onsisting of non-interating subunits an be written asF (q) =  Xi �i!�28<:Xi �2i Fi + 2Xj<k �j�kAj  njkYi=1	ijk!Ak9=; :The partile is onsidered as onsisting of a number of non-interating sub-units referred to by the indies i,j and k. Eah subunit has a referene point,whih ould be the enter of a miellar ore, the end of a hain, or the bound-ary between two adjaent bloks on a opolymer. �i denotes the total exesssattering length of the i'th subunit, while Fi is the Fourier transform of thesite-site orrelation funtion, i.e. the form fator of the i'th subunit. Ai is theFourier transform of the site-to-referene point distribution, i.e. the form fatoramplitude. For any subunit j and k it is assumed that there exists a uniquepath of njk steps along referene points of other subunits onneting referenepoints subunit j and k. This ould for instane be the blok boundaries alonga 5-blok opolymer. The Fourier transform of the distane distribution of thei'th step between the j and k subunits is denoted 	ijk, i.e. it is a phase fator.This expression has the following interpretation. The distane between twosites on two di�erent subunits j and k an be written as the a sum of a number ofsteps, orresponding to site-to-referene point step, and a numner of referene-to-referene point steps until the seond subunit is reahed, and �nally a stepfrom the referene point of the seond subunit to the seond site.Similarly the pair-distane distribution between two di�erent sites on twodi�erent subunits an be fatorised into the onvolution of distributions repre-senting the site-to-referene point step (yielding form fator amplitude Aj), aprodut of the distributions representing the referene-to-referene point steps(yielding phase fators 	ijk), and a step from the referene point to a site insubunit k (yielding Ak). This is due to the fat that the Fourier transform of aonvolution is simply the produt of the Fourier transforms. This is only trueif the on�gurational average of the pair-distane distribution an be regardedas the produt of on�gurational averages of the individual steps, whih is onlytrue if the subunits are non-interating. Hene, this expression is valid for anyayli strutures of subunits, where the interations between di�erent subunitsare negligible, while interations within the subunit an be inorporated in theexpressions for Fi and Ai. Hene, all onnetivity information about the stru-ture is inluded, even though interations between subunits are negleted. Inartile IV it is shown how to inlude exluded volume interations on the levelof a linear hains of polymer subunits, suh as a blok opolymer.
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Figure 6.8: Illustration of possible the site-site orrelations of a miellar stru-ture.An example: assuming the partile is a mielle whih onsists of two subunitshains in the orona (index ��) and a ore (index �s�). No assumptions aremade about the ore geometry. Then the possible site-site orrelation funtionsare intra-hain orrelations, inter-hain orrelations, hain-ore orrelations andore-ore orrelations, as shown in �gure 6.8.The intra-hain sattering F an be alulated from the pair-distane distri-bution within a hain, while the ore form fator Fs an be alulated from thepair-distane distribution between sites within the ore. The distane betweentwo sites within the ore an be written as two steps: a vetor from one siteto the enter, and a step from the enter to the seond site, as shown in �gure6.8. Thus the pair-distane distribution an be written as the onvolution of twoidential step probability distributions Ps(r) desribing the probability for a siteat position r relative to the enter being within the ore for a �xed ore orien-tation. Denoting by As(q) the Fourier transformation of the distribution Ps(r);the pair-distane distribution is simply for ore form fator Fs(q) = A2s(q) byvirtue of the Fourier theorem for onvolutions.The vetor distane between a partiular site on a hain and another sitein the ore an be written as the sum of three steps: a vetor from the siteto the tethering point of the hain, a vetor from the tethering point to theore enter, and a vetor from the ore enter to the site in the ore. Thus thepair-distane distribution an be written as the onvolution of the probabilitydistributions of the three steps, and the Fourier transform of this onvolutionyields the produt of the Fourier transforms of the probability distributions. Thestep from a site on a hain to the tethering point is the form fator amplitudeof the hain yields a fator A(q), the step from a site on the ore surfae to theore enter yields a fator 	s(q), and the step from the ore enter to the site in



68 CHAPTER 6. SUMMARY OF ARTICLESthe ore yields As(q). Thus the hain-ore sattering ontribution has the formA(q)	s(q)As(q), where 	s(q) is the ore surfae phase fator.The distane between two partiular sites on two di�erent hains an bewritten as the sum of four steps: a step from the site to the tethering point,from tethering point to the ore enter, from the ore enter to another tetheringpoint, and from the tethering point to the site on that hain. Thus the inter-hain sattering has the form A(q)	s(q)	s(q)A(q), as illustrated on �gure6.8.Weighting the ontributions with the proper total sattering lengths andtaking are of the weighing between intra- and inter-hain orrelations the formfator of a mielle with an arbitrary ore geometry and non-interating hainsis Fmi(q) = (� + �s)�2*�2sA2s(q) + �2N F(q)+�2 (N � 1)N A2(q)	2s(q) + 2��sA(q)	s(q)As(q)�o : (6.6)The terms are the ore form fator, the intra-hain sattering, the inter-hainsattering, and the hain-ore interferene funtion. The intra-hain satteringis proportional to the number of hains N , while the inter-hain sattering isproportional to the number of pairs of hains N(N � 1), while the total isN2. This explains the weighting between intra-hain and inter-hain satteringontributions, an orientational average has to be performed on the produt ofFourier transforms as the ore surfae is rigidly attahed to the ore.In the speial ase of a spherial ore, the probability of a vetor r is withinthe ore is Ps(r) = �(jrj � Ro)=(4�R3o=3), where �(x) is the step funtion(�(x) = 1 for x � 0 and �(x) = 0 for x < 0 ). The probability for a vetor r tobe loated on the ore surfae is Psurf (r) = Æ(jrj � Ro)=(4�R2o). From thesesimple distributions the surfae phase fator and ore form fator amplitude aregiven by 	s(q) = Z 10 dr4�r2 sin(qr)=(qr)Psurf (r) = sin(qRo)=(qRo)and As(q) = Z 10 dr4�r2 sin(qr)=(qr)Ps(r) = �(qRo):Thus the miellar form fator eq. (6.6) beomesFmi(q) = (� + �s)�2  �2s�2(qRo) + �2N F(q)+�2 (N � 1)N A2(q)� sin(qRo)qRo �2 + 2��sA(q)sin(qRo)qRo �(qRo)! :This expression redues to the expression for the miellar sattering pre-sented at the start of this hapter (eq. 6.1) using the abbreviations of the



6.4. ARTICLE IV 69Pedersen-Gerstenberg model with d = 0, and omparing eqs. (6.6, 6.2 and 6.3)suggests that solution pro�le form fator for a mielle with an arbitrary oregeometry is Fmi(q) = (� + �s)�2*�2sA2s(q) + �2N Fflu(q)+�2 [N � Fflu(q = 0)℄N A2or(q) + 2��sAor(q)As(q)�o ; (6.7)The rationale behind the derivation of the form fator an be used to derivean expression for the inter-partile struture fator. The vetor between two siteson two subunits on two di�erent aggregates an be regarded as onsisting of anumber of steps from the site to the referene point of that subunit, steps alonga path from referene-to-referene points until the aggregate entre is reahed.Then a step from the enter of one aggregate to the enter of another aggregate,followed by a path from that enter along referene points of subunits until theseond subunit is reahed, and a step to the �nal site on that subunit. Theintermoleular struture fator isHss(q) =  Xi �i!�2(Xk �kAk  nkYi=1	i;k!)2 (S(q)� 1) ;Here index �� denotes the enter of the aggregate, and S(q) is the enter-to-enter struture fator. The term in the braked is the form fator amplitudeA of the entire partile. The sattering from a solution of aggregates is the sumof intra-moleular and inter-moleular sattering given byP (q) = F (q) +Hss(q) = F (q)Sapp(q);where the e�etive struture fator is given bySapp(q) = Hss(q)F (q) + 1:In the speial ase, where aggregates onsist of a spherial symmetri aggre-gate with a form fator amplitude A(q) then Hss(q) = A(q)2(S(q) � 1) andF (q) = A2(qr), whih leads to Sapp(q) = S(q). Thus the apparent struturefator orresponds to the enter-to-enter struture fator for spherially sym-metri satterers. This is a well known result for monodisperse suspension ofspherial satterers [109℄.The inter-moleular struture fator for a solution of non-interating miellesan easily be shown to beHmi(q) = (� + �s)�2 (h�sAs(q) + �Aor(q)io)2 (S(q)� 1) :The orona form fator amplitude is given by a generalised ore-shell modelexpression Aor(q) = R1Ro drA(r)	s(q; r)�(r), where �(r) is the area density ofsatterers in the r sized shell, and A(r) is the area of that shell. It remains tovalidate these generalisations of the miellar sattering.
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A Monte Carlo study on the effect of excluded volume interactions
on the scattering from block copolymer micelles

Carsten Svaneborg and Jan Skov Pedersen
Condensed Matter Physics and Chemistry Department, Riso” National Laboratory, DK-4000 Roskilde,
Denmark

~Received 26 January 2000; accepted 10 March 2000!

Effects of excluded volume interaction on the form factor of a block copolymer micelle model have
been investigated by performing Monte Carlo simulations. The micelles are modeled as a corona of
semi-flexible chains tethered to a spherical core. Simulated form factors are analyzed using the
model proposed by Pedersen and Gerstenberg. A slightly modified model is presented, in which
chains consists of a radially pointing rigid rod, onto which a Gaussian chain is attached. The straight
section emulates chain stretching near the micelle core. Both models are fitted to the simulation data
using two parameters, that describes the individual chains: the radius of gyration, and the average
center-of-mass distance to the micelle core. Based on a comparison between parameters obtained
from fits, and those obtained directly from the simulation, it is concluded that the models provide
good estimates for the radius of gyration and the chain center-of-mass distance for a low surface
coverage, while systematic deviations are observed for high surface coverage, where chains begin
to overlap, and excluded volume interactions becomes significant. ©2000 American Institute of
Physics. @S0021-9606~00!51321-X#

I. INTRODUCTION

When diblock copolymers are put into a selective sol-
vent, that is, a good solvent for one block, and a poor solvent
for the other, the copolymers spontaneously self-assemble
into aggregates. These micellar aggregates have a dense core
and a corona of solvated polymers chains. Different mor-
phologies will self-assemble upon variation of the concentra-
tion, solvent or the relative length of the two blocks. These
morphologies include micelles with spherical, elliptical or
cylindrical cores. At high volume fractions the aggregates
might order into structures such as: crystals structures of
spherical micelles, hexagonal rod structures of cylindrical
micelles, or the micellar aggregates can coalesce forming a
number of continuous structures as for instance a lamellae
structure.1,2 These colloidal polymer solutions are examples
of complex fluids, which exhibit novel and interesting physi-
cal phenomena.3–6

Light scattering, small angle neutron or x-ray scattering
~LS, SANS and SAXS, respectively! are powerful techniques
for obtaining structural information about colloidal
solutions.7 SANS combined with contrast variation tech-
niques is an especially powerful technique, as it allows for
the separation of the contributions from the various colloid
constituents. However, it is very difficult or even impossible
to invert the measured scattering intensities and deduce the
constituents structure directly, since all phase information is
lost in the measurement process. Instead, structures must be
inferred by fitting models to the experimental data.8 This
necessitates the development of analytical models, or semi-
analytical models as one obtains by parameterization of re-
sults from computer simulations, to allow for a detailed in-
terpretation of the experimental data. Furthermore computer
simulations allows ‘‘computer experiments’’ to be per-

formed, which emulates an experiment, but an experiment
carried out on a well-defined model system. The simulation
results can then be analyzed as real experimental data, and
from the analysis correlations between scattering data and
structural properties of the simulated model can be deduced,
and limits of validity can be established for particular mod-
els.

The aim of the present work is to investigate the effects
of inter-chain as well as intra-chain excluded volume inter-
actions on the scattering form factor of micelles with a
spherical core, and to examine to what extent the model pro-
posed by Pedersen and Gerstenberg9 can be applied. This
analytical model accurately describes the scattering from mi-
celles having chains that do not interact among themselves
and with the core. Core expulsion can be emulated in this
model by lifting the chains away from the core surface. We
present a modified model, which improves the Pedersen Ger-
stenberg model, when chains are excluded from the core. In
this model the chain section is joined to the core surface by
means of a rigid radially pointing rod. We also suggest im-
provements of the models that, to some extent, include ef-
fects of excluded volume interactions. We have used Monte
Carlo simulations as a tool to investigate the excluded vol-
ume effects, and modeled the micelle as a number of semi-
flexible chains tethered to a spherical core. These chains in-
teract among themselves and with the core via excluded
volume interactions. We have also made a number of simu-
lations with core expulsion, but without chain interactions.
This allows us to gauge the effects of excluded volume ef-
fects on the scattering from the polymer corona.

To our knowledge, no study has previously been made
that focuses on the form factor of micelles with chains with
excluded volume interactions. Previous studies of the struc-
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ture of chains tethered to micelles have predominantly fo-
cused on determining the radial density profile,10–12 or the
conformational properties of chains in the core.13 However,
the radial density profile contains insufficient information for
determining the full scattering function, because micelles are
not centro-symmetric objects, as is assumed for core-shell
models.14 Absent from these models are the correlations due
to the chain connectivity, and the lateral density fluctuations
arising from the interactions between different chains. Simi-
lar arguments hold true for self-consistent field theories,15

due to the large fluctuations about the most probable path at
low surface coverage fractions. Core-shell models are not
applicable to any of the simulations presented in this paper.

This paper is organized as follows: In Sec. II we present
the two analytical models; in Sec. III we describe the Monte
Carlo simulations, and define the parameters that we sample
during a simulation. In Sec. IV we report the results, com-
pare simulations with and without interactions, and discuss
the models in the context of the simulations, and Sec. V
contains a summary of our findings. An Appendix contains
some practical information on how the partial scattering
functions are sampled.

II. ANALYTICAL MODELS

Let q denote the length of the scattering vector, the nor-
malized form factor@letting Fmicelle(q50)51] of a block
copolymer micelle with a spherical core can be written

Fmicelle~q !5

1

~rc1rs!
2

@rs
2F2~q !1rc

2Fct~q !

12rcrsScs~q !F~q !#. ~1!

The form factor is comprised of three partial scattering con-
tributions: a core–core contributionF2, a chain–chain con-
tribution Fct , and a chain–core contributionScsF @for core-
shell modelsFct(q)5Scs(q)2]. In this paper the partial
scattering contributions are normalized to unity in theq
→0 limit. The total chain and total core excess scattering
lengths are denotedrc and rs , respectively, and they are
defined as rc5NVc(rchain2rsolvent) and rs5NVs(rcore

2rsolvent), whereVc and Vs are the volume of a dissolved
and core chain, respectively. A diblock copolymer micelle
have implicitly been assumed, such thatN denotes the aggre-
gation number. Finally the scattering length density of a dis-
solved chain, a core chain, and the solvent is denotedrchain,
rcore and rsolvent, respectively. The total chain scattering
function can be subdivided into two contributions: intra-
chain correlations denotedFc , which arises from self-
correlations within each chain, and is strongly influenced by
chain connectivity, and inter-chain correlations denotedScc ,
which is an interference term, that describe correlations be-
tween different chains. When these partial contributions are
normalized, the total chain scattering function becomes:

Fct~q !5

1

N
Fc~q !1

N21

N
Scc~q !. ~2!

The length scales of a single chain are:Rg the radius of
gyration, b the Kuhn length,L is the contour length of the

chain, andl0 the step length. The radius of gyration measures
the chain spatial extent. The Kuhn length measures the char-
acteristic contour length of a semi-flexible chain, on which
bond orientations are correlated; for a flexible chain the
Kuhn and step lengths are equal. Scattering techniques probe
correlations on various length scales, and we expect that the
single chain scattering can be divided into three qualitative
different regions: ForqRg less than unity~the Guinier re-
gion! the chains appear to be pointlike objects~Hausdorff
dimension 0) andFc'1. In the range whereqRg are larger
than unity andqb is less than unity, the random walk nature
of the chains are probed. Since a random walk is a fractal
object with Hausdorff dimension 2, we expect a scattering
function that behaves asFc}(qRg)22. In the regime where
qb is larger than unity, chains are probed on distances, where
the bonds orientations are correlated and they exhibit rigid
rod like correlations with a Hausdorff dimension of 1, and
we expect a scattering function that behaves asFc

}(qL)21. The actual crossovers between these regions are
very broad, making it difficult to accurately estimateRg and
b directly from location of the crossovers on a simulated
Fc(q) curve.

The characteristic scale of inter-chain correlationsRch is
comparable to the radius of the micelle. Because both the
contributions to the total chain scattering function are nor-
malized, inter-chain correlations will dominate the scattering
for low q values, since the core radius usually is larger than
the radius of gyration. Because the characteristic intra-chain
distances are small, intra-chain scattering will dominate the
total scattering at highq values.

If we assume the micelle core is a homogeneous sphere
with radiusRco , the normalized form factor amplitude for
the core is:16

F~q,Rco!5

3@sin~qRco!2qRco cos~qRco!#

~qRco!3
. ~3!

The remaining contributions to the micellar form factor
are given by:9

Fc~q,Rg!5Fchain~q,Rg!, ~4!

Scc~q,Rg ,Rcm!5cchain
2 ~q,Rg!Fsin~qRcm!

qRcm
G2

, ~5!

and

Scs~q,Rg ,Rcm!5cchain~q,Rg!
sin~qRcm!

qRcm
. ~6!

If we assume that excluded volume interactions are ab-
sent, and that chains are flexible, they are described by:

Fchain~q,Rg!5

2~e2x
211x !

x2
, ~7!

and

cchain~q,Rg!5

12e2x

x
, ~8!

wherex5(qRg)2.
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Fchain is the form factor of a flexible chain given by

Debye,17 andcchain is the form factor amplitude of a flexible
chain given by Hammouda.18 Rcm is the chain center-of-
mass~CM! radius, i.e., the distance from the core center to
the CM of the individual chains. Core expulsion is mimicked
by letting Rcm5Rco1dRg ~with d'1), which lifts chains
away from the core surface. This has been shown by Monte
Carlo simulations9 to be a good approximation of core ex-
pulsion. We refer to this model as ‘‘model 1’’ in the remain-
der of this paper.

We have carried out a modification of model 1 by adding
a radially pointing rod, of lengthl5Rcm2Rco that joins the
chain originating at the chain CM to the core surface
~‘‘model 2’’ !. The rod section attempts to mimic the effect of
chain stretching close to the micelle core surface. LetL be
the total contour length of the rod and chain sections, and
x5l/L the fraction of polymer in the rod section. Then the
partial scattering contributions are given by~suppressing
function arguments for clarity!:

Fc~q,Rg ,Rcm ,l !5~12x !2Fchain1x2F rod

12x~x21!cchain

Si~ql !

ql
, ~9!

Scc~q,Rg ,Rcm ,l !5~12x !2cchain
2 Fsin~qRcm!

qRcm
G2

1x2w rod
2

12x~12x !cchainw rod

sin~qRcm!

qRcm
,

~10!

Scs~q,Rg ,Rcm ,l !5~12x !cchain

sin~qRcm!

qRcm
1xw rod.

~11!

The individual rods are described by the form factor of
an infinite thin rod,19 and the form factor amplitude of a rod,
respectively:

F rod~q,l !5

2

lq
Si~ql !2

4

~ lq !2
sin2F lq

2 G , ~12!

and

w rod~q,l,Rcm ,Rco!5

1

ql
@Si~qRcm!2Si~qRco!#, ~13!

with Si(x)5*0
x (t21 sint) dt.

The rod section will usually be short (l;Rg) compared
to the contour length of the chain section, and thus give only
a small correction to the total chain scattering. However, the
addition of the nonoscillatory rod term to the oscillatory
chain term in scattering expression Eq.~11! is more pro-
nounced, as it influences both the phase and amplitude of the
oscillations. The equations defining model 1 and 2, Eqs.~4!–
~6! and Eqs.~9!–~11!, are purely due to the geometrical as-
sumptions: The chain CMs are evenly distributed on a sphere
with radiusRcm , and that chains are tethered to the end of a
rod; whereas the objects that scatter radiation are described
by the form factor and form factor amplitudes, Eqs.~7!, ~8!,
~12!, and ~13!. Neither model 1 nor model 2 accounts for

chain–chain interactions in the corona, both models, how-
ever, take chain connectivity explicitly into account, and
they mimic the chain exclusion from the core by raising the
chain CM above the core surface. Since chains are described
by the Debye and Hammouda expressions, finite length ef-
fects and effects due semi-flexibility are not included. In the
Rcm→0 limit model 1 reduces to the expression for a star
polymer.20

III. MONTE CARLO SIMULATION

In the simulation we model the micelle as a spherical
core, havingN semi-flexible chains tethered to the surface.
Each chain in turn consists ofn bonds~or n11 vertices! of
length l0 . The valence angle between subsequent bonds is
fixed at 135.585 degrees, while the dihedral angle is free.
This results in a Kuhn lengthb56l0 , such that the radius of
gyration of a flexible and semi-flexible chain coincides in the
long chain limit.

We introduce excluded volume interactions by placing
hard spheres along each of the chains, and a large hard
sphere at the core center. We have 6 vertices per Kuhn length
of chain, which corresponds to one sphere at each vertex. We
have chosen the hard-sphere radiusr50.1b, a choice which
reproduces the binary cluster integral of polystyrene in a
good solvent.21

Each of the tethered chains on the micelle is initially
generated by growing it from a root. A root consists two
bonds, the first bond originating at the micelle core surface
and a virtual zeroth bond ending on the surface, each of the
two bonds point in a random direction. The two root bonds
and their cross product defines a coordinate system, which
can be used as a basis for adding a new bonds with a given
valence and dihedral angle, and this procedure is easily iter-
ated.

The micellar corona is generated by creating roots until
all chains have roots, then bonds are successively added to
the shortest chain, until all chains have the desired number of
bonds. Every time a root is created or a bond is added, it is
checked for overlap with the existing chains and the core. If
an overlap is detected then 20 bonds are removed from the
chain. If this includes removing the root, then a new root is
generated at a different location. A micelle with a dense
corona is difficult to generate, therefore we artificially reduce
the chance for overlap during the creation of the initial mi-
celle configuration, by limiting the range of the dihedral
angle to the interval@260°,60°#. This tends to stretch the
chains, thereby reducing the probability for overlap, while
the micelle is grown.

During the Monte Carlo~MC! simulation we update
chains using the pivot algorithm of Stellman and Gans.22 The
chain vertices are periodically corrected for numerical errors
introduced by the repeated multiplication of rotation matrices
during the pivot moves; our correction algorithm is similar to
that used by Stellman and Gans. Furthermore, we use two
types of surface updates; the first type moves the chain on
the core surface by pivoting the entire chain about core cen-
ter. The second type reorientates the chain by pivoting it
about the tether vertex. The zeroth bond is not used when
collecting data, nor is it used when checking for chain over-
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lap; however, it is pivoted with the rest of the chain, and this
ensures that the first two bonds define a local coordinate
system for the chain, that is, rotated along with all the MC
moves, which provides a constant basis from which to run
the Stellman and Gans correction algorithm.

After each chain update, we check for core overlap,
intra-chain overlap, and inter-chain overlap. An update is
rejected if it overlaps. Both types of chain checks are per-
formed using the ‘‘zippering method.’’23 The inter-chain
check is performed in an order where chains that previously
overlapped with the updated chain are checked first. This is a
heuristic attempt to check chains more prone to overlap be-
fore others, which on average reduces the time spent on
checking for inter-chain overlap.

After a micelle is grown it is equilibrated for 200 times
the total number of degrees of freedom of accepted MC
moves to avoid sampling the initially biased configuration. A
simulation consists of 50 or 100 blocks, each block is the
configuration average of 100 samples, and 1000 MC updates
is performed between each sampling. Error bars are esti-
mated from the fluctuations of block averages.

Let rik be the position of thekth vertex on theith chain
relative to the core center. In the followingi, j denote chain
indices with a 1, . . . ,N range, andk,l denote vertex indices
with a 1, . . . ,n11 range. During a simulation, we sample
the average chain CM radiusRcm , and the square radius of
gyrationRg

2 of the individual chains. These are defined as:

Rcm5K 1

N (
i

uRcm,iuL with Rcm,i5
1

n11 (
k

rik ,

~14!

and

Rg
2
5K 1

~n11!N (
i

(
k

~Rcm,i2rik!2L . ~15!

We also sample the partial scattering contributions, cor-
responding to the chain self-correlationFc(q), the chain–
chain correlation functionScc(q), and the chain–core corre-
lation functionScs(q); these are, respectively, given by:

Fc~q !5K 1

~n11!2N
(

i
S (

k
e2iqrikD S (

l
e iqrilD L ,

~16!

Scc~q !5K 1

N~N21!~n11!2 (
i

S (
k

e2iqrikD
3S (

j5” i
(

l
e iqrj lD L , ~17!

and

Scs~q !5K ReS 1

~n11!N (
i

(
k

e iqrikD L . ~18!

A practical description of how these quantities are evalu-
ated during a simulation is presented in the Appendix. The
averages consist of both an orientational average, and a con-
formal average over nonoverlapping conformations. These
are performed by averaging the partial scattering contribu-

tions over 13 different directions for each configuration
sample. The partial scattering contributions are all normal-
ized to unity in theq→0 limit. Note that the core form factor
amplitude has been taken out of the chain–core scattering
contribution, which allows data obtained from the MC simu-
lation to be compared to the corresponding expressions in the
analytical models.

IV. RESULTS AND DISCUSSION

In order to describe the dependence of the various prop-
erties on surface coverage, we define a dimensionless mea-
sure of surface coverage as the ratio between the area of a
single chain, defined by the radius of gyrationR0 of a un-
perturbed semi-flexible chain with a finite number of steps24

and the surface area available per chain at a distanceRco

1R0 from the core center:

s5

NpR0
2

4p~Rco1R0!2
. ~19!

Our surface fraction is analogous to the dimensionless
c/c* concentration in semi-dilute solutions, wherec* is the
concentration at which the individual polymers begin to
overlap. At a surface coverage much less than one, chains are
separated and their conformation mainly influenced by core
expulsion and expansion due to excluded volume effects
within each chain. We expect that as the surface coverage
reaches unity, polymers begin to overlap and the interaction
between different chains becomes more pronounced. Curva-
ture is another effect which influences the properties of the
micellar corona. When chains are tethered to a flat surface,
they will approximately be uniformly stretched away from
the surface~the Alexander–de Gennes approximation! in or-
der to balance the elastic stretching energy and excluded vol-
ume interaction between monomers.12 However, chains teth-
ered to a sphere~or any convex surface! will gain a relatively
larger accessible volume at constant surface coverage, as
they stretch away from the surface with a large curvature
~i.e., small core!, compared to chains tethered to surface with
low curvature~i.e., large core!. We use the dimensionless
ratio h between the radius of gyration and the core radius as
a measure of curvature effects. When this ratio is small,
chains behave as they are tethered to a flat interface. If the
ratio is large, i.e., chains have a large radius of gyration
compared to core radius, the micelle becomes more like a
star polymer. These proposed measures of surface coverage
and curvature will fail, if chains are stretched away from the
core to such an extent that the chains can no longer be con-
sidered to be isotropic, i.e., when the chains form a brush, or
if the chains are so short that their radius of gyration and
contour lengths are comparable.

We have defined a reference micelle havingN544
chains, core radiusRco53.33b, and contour lengthL/b
58.32 corresponding ton550 bonds. We have performed
simulations, varying each of the three parameters in turn,
while keeping the remaining two parameters fixed at their
reference values. Eighteen simulations have been performed
with the number of chains ranging from 1 to 360, corre-
sponding to a surface coverage in the range from 0.01 to 4.9.
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16 simulations varying core radius in the range
1.24b – 22.11b, corresponding to a surface coverage from
0.02 to 2.4, and 11 simulations varying contour lengths in
the range 1.5b – 60.67b corresponding to a surface coverage
in the range from 0.1 to 2.6.

Simulation results for the total chain scattering are
shown in Figs. 1–3, for low (s'0.1), medium (s50.67)
and high (s'2.4) surface coverage. The medium results
correspond to the reference micelle, which is shown in all
figures as a common basis for comparison. The total chain
scattering from simulations carried out with core expulsion,
but without excluded volume interactions, is also shown on
the figures. These are termed noninteraction simulations in
the remainder of the paper. Scattering from these simulations
is independent of the number of chains, except for the

weighting between the inter- and intra-chain scattering con-
tributions to the total chain scattering. These simulation re-
sults are well described by both the analytical models from
Sec. II ~these fits are not shown in the figures!. Comparing
noninteracting simulations to simulations with interactions
allows us to identify features in the observed scattering
which are due to excluded volume effects.

A qualitative examination of the simulation results
shown in Fig. 1 reveals that the total chain scattering has a
very nontrivial dependence on the number of chains for
simulations with excluded volume interactions compared to
the noninteracting simulations. The general behavior ob-
served is one where the scattering intensity at highq values
drops, while oscillations become more pronounced, as we
increase the number of chains. This is a direct consequence
of weighting of intra-chain and the oscillatory contribution
from inter-chain correlations in Eq.~2!, and is clearly ob-
served on the noninteraction simulations. Simultaneously,
the excluded volume interactions causes the first minima to
grow progressively more narrow, while the higher order os-
cillations appear to be attenuated, when compared to the
noninteraction simulations. The noninteracting simulations
are well described by both models, and since the inter-chain
contribution in both models is always positive, the minima in
the total chain scattering correspond to the zero points of the
inter-chain contribution; thus the depth of the minima is de-
fined by the intra-chain contribution. The fact that the
minima of the simulations with excluded volume interactions
are below those of the simulations without interactions leads
us to conclude that the inter-chain contribution is negative at
the first minima, and at the higher order oscillations, since
the intra-chain contribution is only slightly affected by the
increase in the number of chains.

By examining the pair distance distribution correspond-
ing to the inter-chain correlationsScc(q) for: ~i! simulations
without core expulsion and excluded volume effects~not
shown, but described by model 1!; ~ii ! simulations with core
expulsion but without interactions between different chains;

FIG. 1. Total chain scattering functions when varying the number of chains.
The simulations withN56 ~circles!, N544 ~boxes!, and N5160 ~dia-
monds, shifted down half a decade! correspond to surface densitiess
50.09, 0.67, and 2.44, respectively. Curves are simulation results without
excluded volume interactions~full !, model 1 ~dash-dotted!, and model 2
~dashed! fits.

FIG. 2. Total chain scattering function when varying the core radius. For
simulations withRco59.89b ~circles, shifted down a decade!, Rco53.33b
~squares, shifted down half a decade!, and Rco51.24b ~diamonds! corre-
sponding to surface densitiess50.11, 0.67, and 2.43, respectively. Curves
are simulation results without excluded volume interactions~full !, model 1
~dash-dotted! and model 2~dashed! fits.

FIG. 3. Total chain scattering function when varying the chain length. The
simulations withL51b ~circles!, L58.32b ~squares!, andL560.67b ~dia-
monds! correspond to surface densitiess50.11, 0.67, and 2.59, respec-
tively. Curves are simulation results without excluded volume interactions
~full !, model 1~dash-dotted! and model 2~dashed! fits.
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and ~iii ! full interacting chains, we observe that the intra-
chain interaction introduces a correlation hole in the short
range part of the pair-distance distribution. At low surface
coverage, chain overlap is negligible, and effects of the hole
are absent from the observed scattering. However, as the
surface coverage increases, and chains begin to overlap, and
the shape of the correlation hole becomes clearly defined.
This is consistent with the correlation hole associated with
semi-dilute polymer solutions and polymer melts.25

Figure 1 shows an inward shift of the first secondary
peak as the number of chains increases, when comparing
simulations with and without excluded volume interactions.
This is consistent with the expectation that an increase in
chain interactions forces the chain CM away from the core.
A very slight decrease in scattering at highq values is ob-
served for the low surface coverage simulation, which is due
to the slight increase in the radius of gyration due to intra-
chain excluded volume interactions. The decrease of scatter-
ing at highq values for higher surface coverage is caused by
the negative inter-chain scattering contribution, which de-
cays slower than the noninteraction simulation results.

A qualitative pairwise comparison between Figs. 2 and 3
shows curves that appear to be identical except for a scale
factor. This is to be expected since the simulations shown in
the two figures have nearly identical surface coverage, cur-
vature measureh5Rg /Rco , and number of chains, and
these are the dimensionless quantities that describe the co-
rona. Thus we expect the two scattering contributions to fol-
low a scaling behavior of the form:

S~q !5 f s,h,N~qRg!. ~20!

The curves shown in Fig. 2 coincide at highq values,
where the intra-chain scattering contribution dominates. This
is to be expected, since the radius of gyration is only per-
turbed by the reduction of the core radius. However, the
reduction of the core radius moves the chains CM closer to
the core center, which corresponds to a shift of the oscilla-
tions toward largerq values as observed. In Fig. 3 the large
change in the radius of gyration associated with the increase
in the chain length is clear from the decrease of scattering in
the highq range. However, as the chains become longer, the
chain CM move away from the core, which corresponds to a
shift of the oscillations toward lowerq values, which is also
observed. In Fig. 3 we observe a clear difference in the decay
of the intra-chain contribution for the longest chains. The
decay is given by (qRg)21/n, wheren is the critical length
exponent, which isn50.5 for a random walk, andn
50.588 for a self-avoiding random walk.14 For simulations
with short chains this decay is not observed due to finite size
effects.

For the simulations shown in Figs. 2 and 3, the ampli-
tude of oscillations due to the inter-chain scattering contri-
bution is observed to decrease with increasing surface cov-
erage and decreasing core radius, i.e., for increased
curvature. For the noninteracting simulations, this is due to
the fact that intra-chain correlations dominate the inter-chain
correlations in theq range, where oscillations would be ob-
served, and as a result oscillations appear to be attenuated.
This is also true for the noninteracting simulations, however,

the intra-chain term is strongly affected by the effects of the
correlation hole due to the increased curvature and surface
coverage.

Figures 4–6 show the logarithm of the absolute value of
the chain–core scattering, a term that only depends on the
radial density distribution of chains. This term oscillates
around zero, and for each sign change the logarithm gives
rise to an inverted peak. A qualitative comparison between
the chain–core scattering shown in the figures reveals that
the frequency of the oscillations depends strongly on the
chain length and core radius, but they are only slightly per-
turbed by a variation in the number of chains. The noninter-
acting simulations are well represented by both models,
where the oscillatory behavior originates in the dependence
on the chain CM radius. This explains why increasing the
number of chains only slightly effects the oscillations, com-
pared to simulations where the core radius or radius of gy-

FIG. 4. Chain–core scattering when varying the number of chains for the
simulations shown in Fig. 1. The medium and high surface coverage curves
have been shifted down two and four decades, respectively. Curves are
simulation results without excluded volume interactions~full !, model 1
~dash-dotted! and model 2~dashed! fits.

FIG. 5. Chain–core scattering when varying the core radius for the simula-
tions shown in Fig. 2. The medium and high surface coverage curves have
been shifted down two and four decades, respectively. Curves are simulation
results without excluded volume interactions~full !, model 1~dash-dotted!
and model 2~dashed! fits.
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ration of the chains changes. In the latter cases the chains
CM moves closer or further away from the core, and this
corresponds to the observed shift of the oscillations toward
larger or smallerq values; whereas an increase in the number
of chains only perturbs the radius of gyration slightly and we
only observe a slight shift of the oscillations shown in Fig. 4.

We have fitted the model expressions forFct(q,Rg ,Rcm)
andScs(q,Rg ,Rcm) simultaneously to the corresponding data
obtained from the simulation. We have usedRg andRcm as
fit parameters and fixed the number of chainsN, and core
radius Rco at the values used in the simulation. The total
contour length is fixed atL5nl0 . The contour length along
with Rcm defines the weighting between the scattering from
the rod and chain sections for model 2 fits.

Figures 1–3 show model 1 and 2 fitted to the total chain
scattering for simulations with excluded volume interactions.
It is apparent that both models show systematic deviations at
high q values. At largeq values the intra-chain scattering
term Fc(q) dominates the total chain scatteringFct(q), and
both models use the Debye expression for the chain self-
correlation function. However, the simulated chains are
semi-flexible and have a finite number of bonds, and this
influences the self-correlation function at highq, where a
crossover to rigid rodlike scattering is expected. As a result
of this observation, we have limited the fit range toqb
,4.5, where the Debye expression works reasonably well.
Note that both models fit the noninteracting simulation data
in this range.

The fits are in very good agreement with the simulation
data for surface densitiess;0.1, but as the surface coverage
increases toward unity, the minima become deeper, and both
models fail to account for this since they fail to reproduce the
negative inter-chain scattering contribution due to the corre-
lation hole. However, both models are able to reproduce the
correct oscillatory behavior, and can account for the height
of the first oscillation. The difference between models 1 and
2 on the total chain scattering is marginal, and only shows up

as a slightly more accurate fit to the first oscillation for
model 2.

Model 1 and model 2 fits to the simulated the chain–core
scattering are shown in Figs. 4–6. For surface coverages less
than unity, the fits are in good agreement with the simulation
results except for some phase and amplitude deviations at
high q values. The amplitude deviations are caused by the
failure of the Gaussian chain form factor amplitude in repre-
senting the simulated chains, analogous to the situation for
the intra-chain scattering contribution. The addition of a rod
section to model 1 yielding model 2 has visibly improved
both amplitude and phase matching. The rod term has the
effect of shifting the zero points of the chain–core scattering
contribution of model 2 given by Eq.~11!, which explains
the improved phase and amplitude matching. For high sur-
face densities the second secondary peak in Fig. 4 is broad-
ened, while the first secondary peaks in Figs. 5 and 6 are
broadened. Neither model reproduces this broadening, which
we believe is due to the high monomer density close to the
surface.

When comparing values forRg and Rcm obtained from
simulations with those obtained from the fits, we need to
make some corrections for model 2. The two fit parameters
describe the Gaussian chain part of the chain, and not the rod
section. The rod section decreases the chain CM radius,
while it increases the radius of gyration. These corrections
can be calculated analytically, and are given by:

~Rcm!corr5Rcm2

l2

2L
, ~21!

and

~Rg
2!corr5Rg

2S 3
l~L2l !

L2
1

~L2l !2

L2 D
1l2S l2

12L2
1

l~L2l !

3L2 D . ~22!

The correction of the total CM radius is the weighted
average between the rod and chain CM, while the correction
to the radius of gyration was obtained by expanding Eq.~9!.
Note again thatl5Rcm2Rco is the length of the rod section,
which connects the core surface to the chain segment starting
a distanceRcm from the core, whileL is the total length of
the rod and chain section. In thel→0 limit the rod section
and associated corrections vanish, while in thel→L limit the
chain segment vanishes. In the limit where the chain section
vanishes,Rcm moves inward byL/2, which is the location of
the rod CM, and the radius of gyration correction reduces to
L2/12, which is the radius of gyration of a rigid rod of length
L.

Figures 7–9 show a comparison betweenRg and Rcm

obtained from the fits shown in Figs. 1–6 and the values
obtained directly from the simulation. All figures show the
onset of chain interactions effects ats;1. For the two simu-
lations where a minimal surface coverage limit is well de-
fined, i.e.,N51 andRco522b, both simulations show that
d5Rcm2Rco51.085Rg . The simulation results shown in
Fig. 9 display a qualitatively different behavior compared to

FIG. 6. Chain–core scattering when varying the chain length for the simu-
lations shown in Fig. 3. The medium and high surface coverage curves have
been shifted down one and two decades, respectively. Curves are simulation
results without excluded volume interactions~full !, model 1~dash-dotted!
and model 2~dashed! fits.
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those shown in Figs. 7 and 8. In Fig. 9 the chain length
varies, which has a large impact on the radius of gyration,
while varying the number of chains or the core radius only
has an indirect effect on the radius of gyration, which ex-
pands slightly due to increased chain interactions.

A qualitative comparison of the estimate of the two
models ofRg and the simulation result shows that model 1
provides a better estimate for the radius of gyration over a
large range of surface densities, except for the simulations
with long chains, where there is no discernible difference
between the two models. We expect this to be caused by an
overestimation of the radius of gyration, when the rod sec-
tion is a significant percentage of the total chain length. Con-
versely, model 2 provides a better estimate of the chain CM
radius, which is due to the fact that the rod section improves
the representation of the radial density distribution caused by
core expulsion. One exception is the simulations varying the
number of chains, where both models consistently underes-
timateRcm2Rco ~model 1 by 20%, model 2 by 12%!, which
is due to the bad phase match in Fig. 4. Model 2 consistently
shows improved phase matching compared to model 1,

which explains why it provides a more accurate estimate of
Rcm . For the high surface coverages, the fits only agree with
the simulations results for lowq values. However, they still
provide estimates of the two fit parameters. This is because
the location of the first inverted peak of the chain–core scat-
tering provides an estimate ofRcm , while the lowq behavior
~of model 1!, Scs(q)'12(3Rg

2
1Rcm

2 )q2/6, contains infor-
mation onRg andRcm .

A quantitative comparison of the fit results shown in
Figs. 7–9, show that for surface coverages;0.1, the fits are
very good, and the value of the fit parameters are very close
to those obtained directly from the simulations. As the sur-
face coverage is increased tos;0.67~our reference micelle!
clear deviations become apparent in the total chain scatter-
ing. The deviation between simulation and fits forRg is 1%
for model 1, and 7% for model 2, while theRcm2Rco de-
viation is 19%, and 12%, respectively. This translates into a
deviation forRcm of 5%, and 3%, respectively. For a sur-
face coverage ofs;2.4, the models only reproduce the
simulation data in for lowq values, but they still provide
reasonable estimates for the radius of gyration and chain CM
radius. For the simulation varying the number of chains
@s(N)52.44# the deviations forRg is 5%, and 13% for
model 1 and 2, respectively. The deviations forRcm is 6%
and 4%. The deviations forRcm2Rco is a about factor of 3
larger. For the simulation varying the core radius@s(Rco)
52.43# the Rg deviations are less than 10%, however, the
deviations forRcm is 20%, and 11% for the two models,
respectively. The deviations forRcm2Rco are a about factor
of 2 larger. For the simulation varying the chain length
@s(n)52.59#, both Rg deviations are 6%, while the devia-
tions for Rcm are 21%, and 15%, respectively. The devia-
tions for Rcm2Rco are 1.5 times larger.

As already mentioned, we have also fitted the models to
the simulations without excluded volume interactions, and
both models produce good fits as expected. Model 2 yields a
somewhat better fit to the simulations, and provides an im-
proved estimate of the chains CM radius, when these are
compared to the simulation results. Conversely, model 1 pro-
vides a slightly better estimate of the radius of gyration. This
behavior is consistent with the results for simulations with

FIG. 7. Plot of radius of gyration~bottom curve against the left axis! and the
chain CM radius~top curve against the right axis! when varying the number
of chains. Symbols: Radius of gyration from simulation~circles and full
curve!, chain CM radius from simulation~box and full curve!, model 1 fit
~cross!, and model 2 fit~plus!.

FIG. 8. Plot of radius of gyration and chain CM radius for simulations when
varying the core radius. Symbols as in Fig. 7.

FIG. 9. Plot of the radius of gyration and chain CM radius for simulations
when varying the chain length. Symbols as in Fig. 7.
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excluded volume interactions. These fits are not shown in the
figures.

V. SUMMARY

We have performed Monte Carlo simulations of a model
of spherical block-copolymer micelles, simulations have
been performed with and without excluded volume interac-
tions, in order to qualitatively probe the effects of excluded
volume interactions on the micellar scattering function. We
conclude, that the observed effects can be attributed to a
correlation hole introduced by the excluded volume interac-
tions, which strongly affects the inter-chain and chain–core
contributions to the micellar scattering for micelles with high
surface coverage.

Furthermore we have analyzed the simulation data in the
context of the model of Pedersen and Gerstenberg and an
improved model, where chains are connected to the micelle
surface by a radially pointing rigid rod, which is a crude
model for the chain stretching close to the core surface. Both
models take explicit account of chain correlations due to
single chain connectivity, but neglect excluded volume ef-
fects. Both models approximate the effects of core expulsion
by lifting the polymer corona CM away from the core sur-
face. We have fitted the models simultaneously to the two
scattering contributions; the total chain scattering function
and chain–core scattering contributions as obtained directly
from the Monte Carlo simulations. The fits were performed
with only two free parameters, i.e., the chain radius of gyra-
tion and the chain CM radius. Both models provide very
good fits to simulations with core expulsion but without ex-
cluded volume interactions.

To avoid complications due to the semi-flexible chains
we have simulated, the fit range was restricted toqb,4.5.
This restriction could be removed by applying a more accu-
rate model for the chain form factor and form factor ampli-
tude~7 and 8! for instance a model derived from the Daniels
distribution.26 However, a chain form factor and form factor
amplitude based on the Daniels approximation are not valid
for our reference micelle, since it has only eight statistical
independent segments. Another possibility is an empiric ex-
pression for semi-flexible chains.21 The longest chains simu-
lated shows the decay expected for excluded volume chains,
and these require a chain form factor that can account for
excluded volume effects.14 We are currently working on de-
riving an empiric expression for the form factor and form
factor amplitude of a semi-flexible excluded volume chain
with a finite number of bonds, using Monte Carlo techniques.

For simulations with surface coverage less than unity,
fits of model 1 and 2 to the simulation provide accurate
estimates of the radius of gyration and the chain CM radius
compared to those obtained directly from the simulation. The
fitted parameters show systematic deviations due to excluded
volume interactions for surface coverages above unity. How-
ever, the fits still provide reasonable estimates of the two
parameters. Model 2, which attempts to include effects due
to chain stretching close to the core, has improved the model
estimate of the chain CM radius; however, it has had a det-
rimental effect on the radius of gyration estimate. We at-
tribute this deviation to the fact that the addition of a rigid

rod section overestimates the radius of gyration from the
stretched chains, when the rod section is a relatively large
percentage of the total chain length. However, the rod sec-
tion modifies the model such that it provides a more realistic
representation of the radial density distribution, and thus pro-
vides a more accurate chain CM radius estimate.

In the present paper we have used Monte Carlo simula-
tions to analyze the effects of excluded volume interactions
on spherical block copolymer micelles, and we have evalu-
ated two models that describe these objects. Generally, mod-
els are necessary to extract data from scattering experiments,
which do not allow for direct inversion of the experimental
results in terms of physical structures and their associated
parameters. Analysis and interpretation of experimental re-
sults require a large toolkit of different models. But the qual-
ity of the interpretation can only be as good as the quality of
the model in representing a physically realistic structure. To
evaluate the quality of a particular model, well-defined test
cases need to be examined; for this Monte Carlo simulations
are very well suited.

APPENDIX: CALCULATION OF PARTIAL
SCATTERING FUNCTIONS

To resume:rik denotes the position of thekth vertex on
the ith chain relative to the core center~ranges of indices as
defined previously!.

Let the phase sum of theith chain be z i(q)
5(k exp(2irikq); then the phase sum of the entire polymer
corona is given byw(q)5( iz i(q). The chain self-scattering
function, chain–chain and chain–core interference contribu-
tions are then given by:

~n11!2N Fc~qn!5K (
i

z i* z iL , ~A1!

~n11!2N~N21! Scc~qn!5K w* w2(
i

z i* z iL , ~A2!

~n11!N Scs~qn!5^Re~w !&. ~A3!

Here w* denotes complex conjugation ofw. The aver-
ages are taken over the allowed chain conformations~an MC
average! and micelle orientations. For each MC sample the
scattering functions are sampled for a number of directions,
M, of theq vector. The resulting partial scattering functions
depend only on the magnitude of the scattering vectorqn .
Let Nq be the number ofqn values sampled per MC sample.

Each time an MC sample is made,MNqN(n11) com-
plex exponentials~i.e., two trigonometric functions! have to
be evaluated, which should be compared to theN2(n11)2

evaluations that a direct space sampling method would re-
quire to calculate the pair-distance distribution. Reciprocal
space sampling is clearly a vast improvement, since we are
free to chose bothM andNq . However, this is still by far the
most dominant contribution to the total execution time of a
simulation, and a trick is clearly needed to calculate the com-
plex exponentials in an efficient manner. An obvious choice
would be a FFT technique;27 however, FFT require that the
qn’s are positioned on a lattice, and the number of points
required to cover the range fromqmin to qmax is Nq
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5qmax/qmin , even though the cost of evaluating each of the
exponentials is low, a huge number of points is required to
cover 3–4 decades. We have chosen a hybrid approach to
calculating the complex exponentials directly, using symme-
try properties to derive them, while keeping theqn’s approxi-
mately equidistant on a logarithmic scale.

Let us abbreviateaqn5rik•(qnq̂) whereq̂ is a unit vec-
tor. In the following we will concentrate on calculating
exp(2iaqn) in the case where exp(2iaqm) has already been
calculated for allm,n. If qm exists such thatqn52qm , then
exp(2iaqn)5exp(2iaqm)2 ~the double angle formulas!, since
we have previously evaluated exp(2iaqm), we only need to
square that number. Ifqm ,qp exists such thatqn5qm1qp

then exp(2iaqn)5exp(2iaqm)exp(2iaqp) ~the addition for-
mulas!, since both exponentials have previously been evalu-
ated, we only need to calculate the product of two numbers.
Thus by an advantageous choice of theqn distribution, we
can use symmetry properties to convert many trigonometric
evaluations into simple products of known complex num-
bers. The higher order symmetry properties require more al-
gebraic operations, and do not provide a significant optimi-
zation.

Let the target distribution be given by

qn
0
510(log qmax2 log qmin) ~n/Nq! 1 log qmin, ~A4!

which is an equidistant distribution, withNq points covering
the interval fromqmin to qmax on a logarithmic scale.

The actual distribution ofqn’s are chosen as to minimize

E@q1 , . . . ,qNq
#5kS Nq

ln~10!~ logqmax2 logqmin!
D 2

3(
i51

Nq ~q i2q i
0!2

~q i
0!2

~A5!

1bNcalc1gNadd1dNdouble, ~A6!

whereNcalc,Nadd, andNdouble is the number of exponentials
that require direct evaluation, or can be deduced using the
addition formulas, or formulas for the double angle, respec-
tively. Thus Nq[Ncalc1Nadd1Ndouble. The weightsb,g,
andd are chosen to represent the duration of the respective
numerical operation; we have usedb51 and g5d50.1.

The first term is a harmonic term that determines how large
deviations from a perfect logarithmic distribution should be
allowed, in order to speed up the evaluation; since the distri-
bution is on a logarithmic scale, we have to divide by the
local length scale, which is given by the parenthesis and the
denominator. The constantk should be chosen so small that
the orderingqm,qn when m,n is ensured, we have used
k50.01. This penalty functional is easily minimized by a
simulated annealing quench, with moves that shiftqn’s,
which require trigonometric evaluations intoqn’s, which can
be evaluated by simple algebraic operations on known num-
bers. If Nq is huge, care must be taken to avoid truncation
errors in the evaluation. In our implementation only about
10% of the complex exponentials need to be evaluated di-
rectly.
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84 CHAPTER 8. ARTICLE IIBlok opolymer mielle oronas as quasitwo-dimensional dilute/semi-dilute polymersolutionsCarsten Svaneborg and Jan Skov Pedersen*Condensed Matter Physis and Chemistry Department, Risø national Labora-tory, DK-4000 Roskilde, Denmark*Present address: Department of Chemistry, University of Aarhus, Langelands-gade 140, DK-8000 Aarhus C, DenmarkChain-hain interations in a orona of polymers tethered to a spherial ore undergood solvent onditions are studied using Monte Carlo simulations. The total satter-ing funtion of the orona as well as di�erent partial ontributions are sampled. Byombining the di�erent ontributions in a self-onsistent approah it is demonstratedthat the orona an be regarded as a quasi two-dimensional polymer solution, with aonentration dependene analogous to that of an ordinary polymer solution. Satter-ing due to the orona pro�le and density �utuation orrelations are separated in thisapproah. The osmoti ompressibility is extrated from the latter, and it is shown tobe a universal funtion of surfae overage, with some deviations at high overage dueto surfae urvature e�ets.This paper has been aepted by Physial Review E as an RapidCommuniation.



85Polymers an be tethered to a surfae, thus forming a di�use layer on thesurfae [1, 2℄. The equilibrium properties of suh a layer follow from the balanebetween entropi fores and exluded volume interations. The latter favor astate with a minimum of monomer-monomer ontats, whih an be ahievedby inreasing the available volume per hain by inreasing the layer thikness.Entropi fores will tend to maximize the number of available hain on�gura-tions by opposing the hain strething and by shifting the orona away from thesurfae to some extent. At low surfae overage the surfae interation will dom-inate, and the polymers will have a mushroom like shape. At very high surfaeoverage exluded volume interations and hain-hain interations dominateand hains will be strongly strethed forming a polymeri brush [3, 4℄. Betweenthe mushroom and brush regime there is a broad region of intermediate sur-fae overages [5℄, whih is the typial regime aessible by experiments, see e.g.[6, 7℄.In the present work we study the sattering from the polymeri layer of aspherial partile suh as the polymer orona of a diblok opolymer mielle.We use Monte Carlo (MC) simulation-generated data to show that a model inwhih the the orona is regarded as a two-dimentional solution is appliable.The total orona sattering an be deomposed in two ways. In the analytialmodel of Pedersen and Gerstenberg [8℄, the intra-hain and inter-hain sat-tering ontributions are ombined to give the orona sattering, however, thesame result an be obtained by ombining the sattering ontribution due tothe average orona pro�le and density �utuation orrelations [9℄. The latter de-omposition an be interpreteted as being the sattering expeted from a thinlayer of dilute/semi-dilute solution on�ned to a thin layer around the ore [10℄.The approah presented in the present paper is based on self-onsistent analysisof the MC results using the expressions provided by these two deompositions.The total orona sattering as well as the intra-hain, inter-hain, and oronapro�le sattering ontributions were sampled during the simulations. The ef-fets of exluded volume interations, ore expulsion, and hain semi-�exibilityon the sattering was simulated and series of simulations varying the number ofhains, hain length, and ore radius were performed. In the analysis of the twoexpressions a Random Phase Approximation (RPA) was used for the �utuationsattering ontribution, and exellent agreement was obtained when insertingthe partial sattering ontributions as obtained from MC simulations. The ex-ellent agreement of the two expressions enables us to extrat the satteringontribution due to density �utuation orrelations within the orona. Thesearry thermodynami information about the apparent seond virial oe�ientand the osmoti ompressibility of the polymer layer. These quantities showa surfae overage dependene analogous to that expeted from an ordinarypolymer solution.Numerous approahes suh as self-onsistent �eld theory [27, 28℄, variationaltehniques [29℄, and numerial simulations [13, 14℄ have all been applied forinvestigating the pro�les of brushes on urved interfaes. Polymer layers at lowand medium surfae overages are not amenable to analytially treatment, dueto the presene of large density �utuations. However, the small-angle satteringfrom a polymeri interfae depends not only on the pro�le but also on the



86 CHAPTER 8. ARTICLE IIorrelations of density �utuations [9℄. The sattering from a dilute or semi-dilute solution of star polymers were treated by Marques et al. using an empirial`blob' approah [16℄. Our approah o�ers a lear quantitative piture of theinteration e�ets in miellar oronas, whih are based �rmly on Monte Carlosimulation results.We desribe the density of hains in a polymer orona on the surfae of aspherial partile using a redued surfae overage. Due to the hain entropy,the enter of mass of a hain will be loated at approximately a distane Rgfrom the ore surfae, where Rg is the unperturbed hain radius of gyration.The e�etive ore surfae area is thus 4�(Ro + Rg)2, where Ro is the oreradius, whereas the ross-setional area of N hains is �R2gN . The reduedsurfae overage is given by the ratio of ross-setional hain area to availablesurfae area as � = N�R2g=[4�(Ro + Rg)2℄. The redued surfae overage is atwo-dimensional analogy of the =� onentration [20, 25℄ for ordinary polymersolutions. A surfae overage of unity orresponds to ritial overlap, where thearea oupied by an unperturbed hain equals the available surfae area perhain. For � < 1 hains are few and far apart and weakly perturbed by thepresene of other hains, and the sattering is well desribed by the model ofPedersen and Gerstenberg [8℄. However, in the brush regime (� � 1) the surfaewill indue hain ordering perpendiular to the surfae as hains are strethed.The sattering in this regime is expeted to be desribed by a ore-shell model[19℄. Experimentally � < 5 is found for opolymer mielles [20, 16, 17℄.The normalized orona sattering [For(q = 0) = 1℄ onsists of two weightedontributions: an intra-hain ontribution F and an inter-hain ontributionS as For(q) = 1N F(q) + �1� 1N �S(q): (8.1)Here q is the magnitude of the sattering vetor, and F is the Fourier trans-form of the pair-distane distribution between sites on the same hain. Theintra-hain sattering is mainly due to hain onnetivity and self-avoidane,and single-hain properties suh as the radius of gyration, the ontour length L,and the Kuhn length b an be determined from it. For a long semi-�exible hainthe Kuhn length is the step length of an equivalent random walk. The inter-hainsattering S is the Fourier transform of the pair-distane distribution betweensites on di�erent hains. The inter-hain sattering ontains information aboutthe orona pro�le, and the radius of the ore. However, it also inludes orre-lations due to hain-hain interations suh as the `orrelation hole', whih isknown to be present in ordinary polymer solutions [20, 25℄.Core-shell models [19℄ desribe the orona sattering in terms of the on�g-urationally averaged pro�le, and as a result all density �utuation orrelationsdue to hain onnetivity, self-avoidane, and hain-hain interations are ne-gleted. The ore-shell approximation is For = A2or, where the pro�le satteringis given by Aor(q) = R10 f(r) sin(qr)=(qr)4�r2dr, and where f(r) is the oronapro�le. If hain-hain interations are negligible, di�erent hains will be unor-related, and the inter-hain sattering will be given by S = A2or. Chain-haininterations will yield an additional ontribution to the inter-hain sattering



87due to short-ranged density �utuation orrelations, whih will dominate theinter-hain sattering at high q values. These �utuations are aused by the re-pulsive exluded volume interations between di�erent hains. Based on this wede�ne an �utuation sattering ontribution Fflu, leaving only orrelations dueto the average pro�le (given by A2or). Thus the orona sattering is rewrittenas Fsol(q) = 1N Fflu(q) + �1� Fflu(q = 0)N �A2or(q): (8.2)The weighting ensures that Fsol is normalized for q = 0 sine Fflu is notnormalized. Rewriting (1) as (2) has the e�et of shifting the in�uene of theorrelation hole from S into Fflu. Therefore, inter-hain orrelations has to beinluded in an expression for the Fflu(q) term. We apply an expression basedon the PRISM theory for polymer solutions and melts, see e.g. [23℄:Fflu(q) = F(q)1� �(q)F(q) : (8.3)Here (q) is the Fourier transform of the diret orrelation funtion betweensites on di�erent hains in an equivalent site approximation, whih dependson the site-site interation potential, and � is the density of sattering sites.The Fsol expression has the interpretation as being the sattering of a dilute orsemi-dilute solution with a pro�le f(r), and will be alled solution sattering.We use Monte Carlo (MC) simulation results for omparing For and Fsol.The mielle was modelled as a number of semi-�exible hains tethered to aspherial ore. Interations were inluded by plaing six hard spheres of radius0:1b per Kuhn length b of the hains as this reprodues the exluded volumee�ets found experimentally for polystyrene in a good solvent [24℄. Chains wereexluded from the ore region. The MC moves onsisted of pivoting the haintails [25℄, and two moves, that moved and reorientated hains on the ore sur-fae. We note that hains are not free to move about on the surfae of a miellewith a glassy or rystalline ore. However, the observed sattering is an ensem-ble average of all allowed orona on�gurations, and this inludes an averageover the loation of the hain tethering points, whih requires a surfae move.The on�gurational ensemble averages of the F, S, and Aor sattering on-tributions were simultaneously sampled during the MC simulations [26℄. Theunperturbed hain radius of gyration was obtained from a separate set of simu-lations of a single hain. We hose a referene mielle de�ned as having N = 44hains, hain length L = 8:33b, and ore radius Ro = 3:33b, this hoie mimis aPluroni P85 mielle [8℄. We performed three series of simulations, where one ofthe three parameters was varied in turn, while keeping the remaining two �xedat their referene values. The range of variation was hosen to orrespond to avariation of surfae overage � in the range from 0.01 to about �ve, thus over-ing the experimental regime ranging from isolated hains to a reasonable hainoverlap. It should be noted that the equilibrium orona on�guration does notonly depend on the redued surfae overage but also on the surfae urvatureRg=Ro and number of hains N .



88 CHAPTER 8. ARTICLE IIComparing (8.1), (8.2), and (8.3) for the sampled sattering ontributionsallows us to obtain the ��(q) term from the simulation results. We found that ithas a weak dependene on q, and as a result we approximate it with an e�etiveexluded volume parameter �(�) � ��(q). This onverts the PRISM expression(8.3) into the form of a Random Phase Approximation. The exluded volumeparameter is related to a virial expansion of the redued osmoti ompressibilityas �(�) = 2A2�+ 3A3�2 + : : : = 2A2(�)� where A2(�) is the redued apparentseond virial oe�ient [28℄. Aor osillates around zero, and we have determined�(�) from the �rst zero point of Aor.The sampled orona sattering from simulations varying the number ofhains is shown in �g. 1 normalized suh that they oinide for large q values.The huge inrease in osillations as the number of hains inreases is ausedby the hange in weighting between the highly osillatory inter-hain ontribu-tion, and the non-osillatory intra-hain ontribution. Also shown in �g. ?? isthe solution sattering. The two sets of urves show an exellent math, whihdemonstrates the self-onsisteny of our model of the orona sattering. Simi-lar exellent agreement is obtained for simulations varying length of hains andore radius (not shown). Finally, the �utuation sattering ontribution Fflu isshown. This ontribution is seen to derease with inreasing surfae overage,analogous to the onentration dependene of the sattering from a polymersolution, see e.g. [28℄. The orona sattering is dominated by pro�le satteringat low q values, whereas the �utuation sattering dominates at large q values.A �utuation-dissipation theorem relates the Fourier transform of the den-sity �utuation orrelation funtion to the osmoti ompressibility [20℄. Theredued osmoti ompressibility is given by � � ����� = Fflu(q = 0)�1 =1 + 2A2(�)� where the redued osmoti pressure is �� = �R2g�=(kbT ). In thisexpression �,kb, and T are the osmoti ompressibility, Boltzmann onstant,and temperature, respetively. Fig. 2 shows the redued osmoti ompressibil-ity obtained from simulations varying number of hains, hain length, and oreradius, and the points fall on an universal urve as funtion of surfae over-age. Similar behaviour have been predited for polymers at �at interfaes byCarignano and Szleifer for �� [5℄ for � < 6. The osmoti ompressibility showsa weak dependene of surfae overage for � < 1, as one would expet fromthe dilute polymer solution analogy, see e.g. [25℄. The insert of �g. 2 shows theapparent seond virial oe�ient. The values from the three series of simula-tions approximately ollapse onto a ommon power law relation: A2(�)� = ���with � = 0:68 � 0:01 and � = 0:95 � 0:02. PRISM theory in the thread limit[23℄ predits that A2(=�) is a onstant for low onentrations. We observe aweak dependene on surfae overage in the range of surfae overages we havesimulated. At high surfae overages the deviations from power law behaviourobserved in the insert of �g. 2 is re�eted in the ompressibility. We attributethese deviations to e�ets of hain strething, whih shows some dependene onthe surfae urvature.In this paper we have demonstrated that the sattering from a orona ofhains tethered to a spherial ore for experimentally relevant surfae overagesan be self-onsistently re-expressed as the sattering one would expet froma quasi two-dimensional dilute/semi-dilute polymer solution on�ned to a thin



89layer on the ore surfae. We note that the radius of gyration as well as theorrelation length are omparable to the orona thikness, whih is why thepolymer layer an be regarded as being quasi two-dimensional. In the brush limitthe hains will be aligned perpendiular to the surfae. This is learly far fromthe ase of a semi-dilute solution, and we expet the RPA expression to breakdown in this limit. It should be noted that we do not observe any deviationsbetween the orona sattering and the solution sattering even for the largestsurfae overages simulated. The expression we have proposed for the solutionsattering bridges the gap between the model of Pedersen and Gerstenberg, validat low surfae overage, and the ore-shell models expeted to be valid at veryhigh surfae overage, while retaining formal similarities with both models.We have also demonstrated that the sattering ontributions due to theorona pro�le and �utuations deouple, allowing us to dedue the osmotiompressibility of the orona from the density �utuation orrelation funtion.The ompressibility shows a universal dependene on surfae overage analogousto that observed for ordinary polymer solutions as funtion of onentration.We furthermore expet similar expressions to be valid for the sattering frommielles with elliptial and ylindrial ores, however, with some deviations dueto the variation of the loal surfae urvature for suh geometrial shapes. Themodel, we have presented, an be used for separating orona pro�le and hain-hain orrelation information in real experiments, and thus allows more detailedinformation to be gained by analysis of experimental data.
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Figure 1: Comparison between orona sattering For and solution pro�lesattering Fsol:prof for mielles with number of hains: N = 3; 8; 22; 44; 87; 131(bottom to top). For (thik line), Fsol:prof (full boxes), and the �utuationsattering Fflu (thin dashed line). These are normalised suh that the singlehain sattering oinides in the large q limit.
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96 CHAPTER 9. ARTICLE IIIForm fators of blok opolymer mielles withexluded volume interations of the orona hainsdetermined by Monte Carlo simulationsCarsten Svaneborg and Jan Skov Pedersen*Condensed Matter Physis and Chemistry Department, Risø national Labora-tory, DK-4000 Roskilde, Denmark*Present address: Department of Chemistry, University of Aarhus, Langelands-gade 140, DK-8000 Aarhus C, DenmarkThe sattering of a diblok-opolymer mielle has been simulated using MonteCarlo tehniques. The sattering is analysed using a novel model, where the oronais represented as a dilute/semi-dilute polymer solution with a radial pro�le. This ap-proah deouples the sattering due to interation and onnetivity indued density�utuations and the average radial pro�le of the orona. Three di�erent pro�les havebeen used to �t the simulated orona sattering: a box with a Gaussian tail, and twomaximum entropy (ME) pro�les; hain penetration into the ore region is not allowedfor any of the pro�les. Exellent �ts are obtained, espeially for a ME pro�le withthree parameters. An exluded volume parameter and the orona ompressibility areobtained, and show a strong dependene on surfae overage. The derived expressionsfor the form fator provides a new approah for analyzing experimental data obtainedby neutron or x-ray small-angle sattering for blok opolymer mielles with signi�antintra and inter-hain exluded volume interations interations.This paper has been submitted to Maromoleules.



9.1. INTRODUCTION 979.1 IntrodutionWhen a diblok opolymer is dissolved in a solvent whih is good of one blokand bad for the other blok, mielles are spontaneously formed. These mielleshave a relatively dense ore of the insoluble bloks surrounded by a di�use oronaonsisting of the solvated bloks. The ore an have various geometri shapessuh as spherial, elliptial, or ylindrial, depending on solvent and the lengthof the polymer bloks [1℄. Suh mielles provide a model system for studyingthe interations between polymer hains tethered to a urved surfae [2℄[3℄.Muh work have been invested in understanding properties of suh systems,as tethering polymers to a surfae provide a way of modifying the physial,hemial, and biologial properties of surfaes [4℄[5℄. There are numerous studiesin the literature of polymers tethered to a �at interfae forming a polymer layer,see e.g. [6℄[7℄[8℄[9℄. For hains tethered to a onvex surfaes suh as a spherethe available volume per hain segment will grow rapidly along the hain assegments moves away from the surfae, and this has a strong e�et on theproperties of the polymer layer. The pro�les of brushes on onvex surfae havebeen examined using variational minimisation of mean �eld theory [10℄, self-onsistent �eld theory [11℄[12℄[2℄[3℄, and simulation tehniques suh as MonteCarlo and Moleular Dynamis simulations [13℄[14℄.Under good solvent onditions a redued surfae overage of a �at polymerlayer an be de�ned as � = �R2go=A0, where Rgo is the radius of gyration ofan unperturbed polymer hain, and A0 is the surfae area available per hain(the inverse grafting density). For � � 1 (the mushroom regime) all hains areessentially isolated. The polymer layer will be laterally inhomogeneous, and theonformation of a single polymer hain depends only on self-interations andthe presene of the surfae. The pro�le of a polymer layer has reently beeninvestigated by renormalization group alulation [15℄ in the low overage limit.For � � 1 (the brush regime) eah hain will interat with many neighbouringhains, and hains will streth away from the surfae in an attempt to redue theexluded volume energy ontribution by a redution of the monomer density,whih is ahieved by inreasing the height of the polymer layer. However, hainstrething will be aompanied by a derease in the on�gurational entropyaused by the redution of the number of possible hain on�gurations. Theheight of the polymer layer is determined by the balane of these two e�ets.In the brush regime the layer will be laterally homogeneous, and the hainstrething will be uniform exept at the outer edge of the layer, where there willbe some �utuations due to the inreased degrees of freedom of the hain ends[10℄.For a spherial miellar ore we de�ne spei�ally the redued surfae ov-erage as � = N�R2go4�(Ro +Rgo)2 : (9.1)Here Rgo is the unperturbed radius of gyration of the hains, while Ro isthe ore radius, and N is the number of hains. The redued surfae overage isthe paking fration of hains on the surfae, assuming that hains are spherial



98 CHAPTER 9. ARTICLE IIIobjets on the surfae of the ore. Due to the non-penetration of the hains intothe ore region the enter-of-mass of a hain is displaed a distane about Rgofrom the ore surfae yielding an e�etive surfae area per hain of 4�(Ro +Rgo)2=N , while the ross-setional area of a hains is �R2go.The topi of the present artile is to present results from omputer simula-tions for the sattering from mielles as well as an analysis of the results by anovel semi-empirial model. The model is a generalization of ore-shell modelsthat takes the sattering due to density �utuation orrelations into aount.The model allows the radial pro�le, hain radius of gyration, and the oronaosmoti ompressibility to be obtained from miellar sattering data.We have performed simulations of the sattering for surfae overages � < 5,whih orrespond to the region of surfae overages experimentally available foropolymer mielles, see e.g. [2℄[16℄[17℄. The omputer simulations have beenperformed using semi-�exible hains with exluded volume interations, wherehains are exluded from the spherial ore region. Monte Carlo simulationtehniques (MC) allow us to sample the sattering ontributions from the miellejust as in a real experiment using ontrast variation tehniques, but using a well-de�ned model for the sattering objet, here a mielle. This allows us to testmodels for the sattering from omplex objets using simulation results, andit allows us to orrelate the observed sattering to properties of the simulatedmodel system, whih will improve the interpretation of experimental satteringdata. The simulation results are analysed using a semi-empirial model, whihombines expressions for the sattering from a ore-shell model with that ofa dilute/semi-dilute polymer solution; a similar model have been used by deGennes for desribing the dynamis of brushes at �at interfaes [18℄[19℄. Wehave used three radial pro�les for desribing the average radial pro�le, a boxwith a Gaussian tail, and two Maximum Entropy pro�les [20℄[21℄[22℄, whereknowledge of the two or three �rst momenta of the pro�le is assumed.The paper is organised as follows: In setion 2 we present a derivation ofthe model, setion 3 presents the Monte Carlo simulations, and the quantitiesthat are sampled during the MC simulations. In setion 4 our MC results arepresented and disussed, while setion 5 ontains our analysis and modelling ofthe data, and our onlusions are summarised in setion 6.9.2 Analytial ModelsIn a dilute polymer solution polymers are well separated, and as a result theonformation and position of di�erent polymer hains are unorrelated. Thesattering from the solution is given by the single hain form fator, whih foran ideal �exible hain is given by FDebye(x) = 2[x � 1 + exp(�x)℄=x2 withx = (qRg)2, where Rg is the radius of gyration, and q the magnitude of thesattering vetor [23℄. For qRg � 1 the form fator follows a (qRg)�2 powerlaw; this is a re�etion of the < R2ij >/ ji�jj saling relation between the root-mean-square (RMS) distane between two sites on the hain and the ontourlength of the hain segments onneting the two sites. Topologially the idealhain is a onneted string-like objet with a fratal dimension of two, while



9.2. ANALYTICAL MODELS 99atual polymer hains are multi-fratals due to their �nite size and the semi-�exibility of the polymer bakbone.The redued density for a polymer solution is de�ned as � = 4�R3go�=3(idential to the redued overlap onentration =�, where � is the overlaponentration of a polymer solution), and � is the number density of hains. Ifthe redued density is well below unity, the solution is dilute, and polymers arewell separated. If the redued density is well above unity, the solution is in thesemi-dilute regime, where polymers are entangled, forming a transient networkof intermeshed hains [24℄[25℄. Using a disrete model with n sites per hain,the sattering from a semi-dilute solution follows the preditions from PRISMtheory [26℄[27℄, whih states that it depends on the single hain sattering anda diret inter-hain orrelation funtion (q) asFPRISM (q) = FDebye(q)1� n�(q)FDebye(q) : (9.2)Here we have negleted the e�ets of self-avoidane and we do thereforenot onsider the sreening at higher onentrations. Let us assume that thedi ret orrelation funtion an be approximated by its low q limit, then �no(q)an be approximated by an e�etive onentration dependent exluded volumeinteration parameter �(�)[27℄. This turns the PRISM expression into the formof a Random Phase Approximation (RPA) [28℄. De�ning the redued surfaeompressibility as � � ���=��, where the redued osmoti pressure is �� =4�R3g�=(3kbT ) (�� = �R2g�=(kbT ) in the ase of a two-dimensional systemof tethered hains to a surfae). Here �; kb, and T are the osmoti pressure,Boltzmann onstant, and absolute temperature, respetively. The RPA exludedvolume interation parameter an be related to a virial expansion of the reduedosmoti ompressibility as � = 1+2A2�+3A3�2+ : : : = 1+2A2(�)� = 1+ �,where the A2(�) = A2 + 3A3�=2 + : : : funtion de�nes the apparent seondvirial oe�ient [28℄. In the dilute limit the RPA expression redues to the formfator of an ideal hain, while in the q ! 0 limit the inverse forward satteringis F�1RPA(q = 0) = 1 + � = � whih is expeted from a �utuation dissipationtheorem.A blok opolymer mielle onsists of a di�use orona of the dissolved blokand a dense ore of the insoluable blok. The normalised form fator [Fmielle(q =0) = 1℄ of a blok opolymer mielle with a homogeneous spherial ore an bewritten in terms of partial sattering ontributions asFmielle(q) = 1(�or + �s)2 h�2s�2(q) + �2orFor(q) + 2�s�orAor(q)�(q)i ;(9.3)where the three ontributions orrespond to sattering from the ore, the orona,and an interferene term between the ore and the orona, respetively. Theorona and ore exess sattering lengths are denoted � and �s, respetively,and they are de�ned as �or = NVor��hain and �s = NVs��ore, where Vor,Vs, ��hain, and ��ore are the volume of a orona and ore blok, the exesssattering length densities of a orona blok, and ore blok, respetively. A



100 CHAPTER 9. ARTICLE IIIdiblok opolymer mielle has impliitly been assumed, suh that N denotes theaggregation number. In this paper the orona, ore and orona-ore interfereneontributions to the mielle sattering are normalised to unity in the q ! 0limit. The normalised form fator amplitude of a sphere is given by Rayleigh as�(qRo) = 3[sin(qRo)� qRo os(qRo)℄=(qRo)3, where Ro is the radius of themielle ore [29℄.Beause the ore is assumed to be spherial and homogeneous, Aor onlydepends on the radial distribution of segments '(r), i.e. the orona pro�le, andAor will in the rest of the paper be denoted pro�le sattering. It is given byAor(q) = Z 10 dr4�r2 sin(qr)qr '(r): (9.4)If the single hain sattering ontribution is negleted as well as orrelationsdue to density �utuations aused by hain-hain interations, the orona sat-tering is given by For = A2or. This is the approximation that yields a ore-shellmodel of the miellar sattering[30℄, whih is the sattering from a on�gura-tionally averaged mielle, rather than the on�gurationally averaged satteringfrom a mielle, whih is the sattering observed experimentally. As single hainsattering is negleted, a ore-shell model is unable to reprodue the harater-isti single hain power law deay at large q values, whih is a signature of thehain onnetivity, nor is a ore-shell model able to represent the �nite satter-ing observed in the minima where Aor(q) = 0. Only in the limit � � 1 wherethe density of hains is very high, e.g. when the orona is in the brush regime, dowe expet these �utuations to be su�iently suppressed for ore-shell modelsto give a reasonable desription.For a mielle the orona sattering is the sum of two ontributions: a on-tribution from the intra-hain sattering F (q) (proportional to the number ofhains N), and inter-hain sattering H(q) (proportional to the number of dif-ferent pairs of hains N(N � 1)). The normalised [For(q = 0) = 1℄ oronasattering is thus given byFor(q) = F (q)N + N � 1N H(q): (9.5)The separation of the orona sattering into inter-hain and intra-hainsattering ontributions is somewhat arbitrary. Another way of separating theorona sattering is in terms of the sattering from the on�gurationally aver-aged radial pro�le, and from the orrelations of the density �utuations [31℄[32℄about this average pro�le. The sattering due to the radial pro�le is given byA2or as in a ore-shell model. The density �utuation orrelation funtion de-pends on hain interations and hain onnetivity, and we model this by thesattering from a two dimensional dilute/semi-dilute solution using the RPAapproximation:Fsol:prof (q) = FRPA(q)N + N � FRPA(q = 0)N A2or(q): (9.6)Here the weighting of the two terms has been adjusted to aount for the fatthat sattering have been shifted from the pro�le sattering ontribution into the



9.3. MONTE CARLO SIMULATION 101�utuation sattering ontribution, and the �utuation sattering ontributionis not normalized. This expression for the orona sattering has separated thetotal sattering into a term that only depend on the sattering from a singlehain and an exluded volume parameter, and a term that only depends onthe radial pro�le of the orona, and an be interpreted as being the satteringone would observed from a polymer solution with a partiular radial pro�lebeing on�ned to the miellar surfae. The �rst term is denoted the �utuationsattering in the rest of this paper, while the seond term is denoted pro�lesattering.9.3 Monte Carlo SimulationWe have performed Monte Carlo (MC) simulations on blok opolymer mielles[33℄. Mielles was modeled as a spherial ore with a number N of semi-�exiblehains tethered to it, where eah hain onsists of n bonds of length l0. Thevalene angle between segments was �xed at 135:585 degrees, whih yielded aKuhn length b = 6l0 suh that the semi-�exible hain reprodues the radiusof gyration of a �exible hain in the long hain limit. The exluded volumeinteration was simulated by plaing six hard spheres along eah Kuhn lengthof the hain. The radius of the hard spheres was �xed at 0:1b, whih is knownto reprodue the binary luster integral of polystyrene in a good solvent [35℄.The MC moves onsisted of pivoting the individual hains [36℄, and two surfaeMC moves, that moved and reorientated hains on the mielle surfae. Thesewere performed by pivoting the entire hain about the ore enter or the tethervertex, respetively. Con�gurations where a hain was found to overlap withother hains or the ore region were rejeted. We used the �zippering� algorithm[37℄ when heking for hain overlap, taking into aount the semi-�exibilityof the hains, and taking are to avoid introduing loal sti�ness by allowingneighbouring verties along the hain to overlap. The initial mielle on�gurationwas onstruted using slightly strethed hains, whih were grown while avoidingoverlaps. This initially biased on�guration was equilibrated by performing MCmoves until the number of aepted moves was in exess of one hundred timesthe number of degrees of freedom in the model. The three parameters ontrollingthe step size of the MC moves were adjusted during the equilibration stage toyield approximately 50% aeptane probability for eah of the three moves.The hain was periodially reonstruted after every 50000 pivot moves us-ing the tabulated dihedral angles to avoid the build up of numerial errors dueto the many repeated rotations needed to sample the miellar on�gurationsspae. This was made possible beause eah hain arries a virtual zeroth seg-ment around with it, and the zeroth segment and the �rst segment, de�ne aoordinate system in whih it is easy to add another segment with a spei� di-hedral angle, valene angle, and segment length. This proedure, when iterated,uniquely reonstruts the hain based on a table of dihedral angles, a table whihwas reated during hain formation, and whih was updated eah time a pivotmove was aepted. This is a heap and e�etive operation ompared to solving3 linear equations for eah segment as in the hain orretion algorithm of Stell-



102 CHAPTER 9. ARTICLE IIIman and Gans [36℄, and also provides an easy way of reating the initial hainon�guration. The deviation between the atual and expeted dihedral anglewas onstantly below 3� 10�12 during the simulation of the longest hain (229segments), with deviations in segment length and valane angle below about athird of that. During a MC simulation the on�guration was sampled for ev-ery 1000 attempted MC steps, and a simulation onsisted of 100 bloks, eahblok being the average of 100 samples. Error bars was derived by analysing the�utuations of the blok averages.During MC simulations the radial density pro�les '(Rj) were sampled ina number of bins at radii Rj as the number of verties lying in a spherialshell entered on the ore with outer radius (Rj + Rj+1)=2 and inner radius(Rj�1 +Rj)=2. Eah bin was normalised by the volume of that spherial shell.We sampled the radius of gyration of the individual hains de�ned asR2g = * 1(n+ 1)N NXi n+1Xk (Rm;i � rik)2+ with Rm;i = 1n+ 1 n+1Xk rik; (9.7)where rik is the position of the k'th vertex on the i'th hain. N is the number ofhains and n+1 is the number of verties/sattering sites. The sattering fromthe mielle orona is given by the sattering from the set of verties and ore asFmielle(q) / *������or NXi Ai + �s������2+ ; (9.8)where the form fator amplitude of the i'th hain isAi(q) = 1N(n+ 1) n+1Xk eiq�rik : (9.9)Sine the mielle ore is assumed to be spherial and homogeneous, the oreform fator amplitude � is real and an be moved outside the on�gurational andorientational average. The remaining on�gurational averages an be omparedto the orresponding terms in (9.3). The normalised orona sattering and thepro�le sattering an be identi�ed asFor(q) = 1N2 *����� NXi Ai�����2+ ; (9.10)and Aor(q) = 1N *Re NXi Ai+ : (9.11)In this notation the single hain sattering and inter-hain sattering an bewritten as the sum of diagonal and o�-diagonal members of (9.10) as:F (q) = 1N * NXi jAij2+ and H(q) = 1N(N � 1) * NXi6=j AiA�j+ : (9.12)



9.4. RESULTS AND DISCUSSION 103Comparing these equations to (9.10) demonstrates the weighting used in theexpression for orona sattering (9.5). The averages onsist of a on�gurationalas well as a orientational average. These were performed using MC sampling, andby evaluation of the sattering for 13 diretions for eah q value, and hoosing anew set of random diretions eah time a blok of 100 samples was ompleted.The set of q values were hosen as approximately logarithmi distributed, butslightly tweaked suh that many q values are the sum of two smaller q values, ortwie another q value. This onverted many of the omplex exponentials neededto evaluate (9.9) into simple produts and squares of previously alulated om-plex numbers. This method of sampling yields a signi�ant optimisation of thesampling of miellar sattering [33℄.9.4 Results and DisussionWe have hosen a referene mielle de�nes as having N = 44 hains, hainlength L = 8:33b, and ore radius Ro = 3:33b, as this mimis the on�gurationof the Pluroi P85 mielles [106℄. We use the Kuhn length b as a length sale.We have performed three series of simulations where one of the parameters N;L, and Ro was varied while keeping the remaining two �xed at their referenevalues. The range of variation was hosen to orrespond to a variation of surfaeoverage in the range from 0:01 to �ve, overing the experimentally aessibleregime for opolymer mielles [2℄[16℄[17℄.Figure 1 shows the orona sattering for simulations where the number ofhains is varied. A qualitative examination shows a huge derease of satteringat high q values relative to the sattering at low q values as the number of hainsis inreased, while the amplitude of the �rst subsidiary osillation inreases andhigher-order osillations progressively beome more pronouned. This is ausedby the weighting between the highly osillatory inter-hain sattering H(q), andthe non-osillatory intra-hain sattering F (q). The sattering is dominated bysingle hain sattering and its 1=N dependene at high q values, while the rapidlydeaying pro�le sattering ontribution dominates at low q values. The minimaof the orona sattering orrespond to q values where Aor(q) = 0, and in thoseminima the sattering intensity is given solely by the hain sattering F .Figure 2 shows the orona sattering orresponding to simulations where theore radius is dereased for �xed number of hains and ore radius. Dereasingthe ore radius, auses the osillations due to the radial pro�le to shift towardslarger q values. Simultaneously the osillations are redued as the inter-hainsattering beomes progressively less dominant ompared to the hain satteringF (q), whih is essentially unhanged by a derease in ore radius.The logarithm of the absolute value of the pro�le sattering is shown in�gures 3 and 4. Eah sign hange gives rise to an inverted peak due to the log-arithm. A qualitative examination shows that inreasing the number of hainshas only a slight e�et on the pro�le sattering i.e. the orona pro�le, as the�rst inverted peaks are shifted slightly towards smaller q values indiating aslight inrease of the orona width. As the ore radius is dereased a huge shiftis seen in the shift of the osillations towards larger q values shown in �gure



104 CHAPTER 9. ARTICLE III4, whih indiates that varying ore radius has a large impat on the oronapro�le. Simulations where the hain length is inreased will display similar ef-fets as those where the ore radius is dereased, as this provides two oppositemehanisms of ontrolling the surfae urvature, whih an be quanti�ed by thedimensionless ratio of the radius of gyration to ore radius. A broadening ofthe �rst subsidiary and seond subsidiary osillation is observed in �gure 3 and4, and this is attributed to e�ets of surfae overage and surfae urvature,respetively, on the shape of the orona pro�le.Figure 5 shows the redued density pro�les sampled during the simulations,where the number of hains, or ore radius was varied. Simulations varying thehain length yields the same redued density pro�le as simulations varying theore radius, as these simultaneously varies the surfae overage and urvature ina similar manner. The redued density pro�les are de�ned as '0(r0) = '(r0)=Cwhere C = R '(r0)dr0 is an area normalisation onstant, and the redued radiusis de�ned as r0 = (r �Ro)=(hri �Ro), where hri = R r'(r) 4�r2dr is the �rstmoment of the simulated pro�le. This representation shows the hange of thepro�le shape rather than the hange of the pro�le itself.At low surfae overage all pro�les indiate a depletion zone lose to theore, however, no depletion zone is present when the surfae overage is in-reased above unity. At su�iently large surfae urvatures the '(r) / r�4=3saling behaviour predited by Halperin [24℄ is learly observed in the viinityof the ore surfae, however, further away from the ore the radial pro�les deayfaster than predited by Halperin, whih is due to the �nite length of the sim-ulated hains. Upon variation of the number of hains, the pro�le only showsa dependene on the number of hains for surfae overages above unity, indi-ating that hain interations are negligible for surfae overages below unity.The pro�le for simulations where the hain length is varied shows a large hangeof shape. This is due to the fat that the e�etive surfae urvature Rg=Ro issimultaneously inreased.9.5 Analysis and modelling of the resultsFor a quantitative analysis of the simulated hain sattering, two parametersare required for the hain sattering, namely the radius of gyration Rg , andthe exluded volume parameter in the RPA expression, whih is assumed to bea funtion of the surfae overage �(�). We have assumed that the exludedvolume oe�ient only depends on the redued surfae overage, in analogywith an ordinary polymer solution where it is a funtion of the redued density� as shown in the theory setion. We have simulated semi-�exible hains, as thisprovides a relatively realisti model for real polymer hains. The simple RPAexpression is modi�ed using a Daniels form fator in the denominator [55℄, whihtakes the semi-�exibility of the hains into aount in an approximate manner,while we retain the Debye form fator in the numerator of the RPA expression.Simulations have shown, that this provides a quite aurate expression for thesattering from semi-dilute solutions of semi-�exible polymers [40℄. The full



9.5. ANALYSIS AND MODELLING OF THE RESULTS 105expression for the �utuation sattering ontribution isFRPA(qRg) = FDaniels � q2R2ge(L=b)�1 + �(�)FDebye(q2R2g) ; (9.13)FDaniels(x) = FDebye(x) + b15L �4 + 7x�1 � (11 + 7x�1)e�x� ;FDebye(x) = 2[x� 1 + exp(�x)℄x2 ;and e(n) = 1� 32n + 32n2 � 34n3 �1� e�2n� :Here e(n) is a orretion to the radius of gyration of the Daniels expressiondue to the �nite number of statistially independent segments in our simulations[41℄. The pro�le sattering Aor is the Fourier transform of the radial pro�le, andrequires an expression for the radial monomer pro�le '(r). To our knowledge, notheoretial expressions exist for the radial density pro�les of spherial miellesin the low to medium overage limit, whih we explore in the present paper.As a result we use three empirial pro�les, all of whih are generalisations of aGaussian distribution.The �rst pro�le we use is a box with a Gaussian tail, abbreviated BoxGausspro�le, whih is de�ned as follows'(r) = 8><>: 0 r < RoB Ro � r < RhB exp ��(r �Rh)2=(2s2)� Rh � r :Here B�1 = R '(r)4�r2dr is a normalisation onstant, Rh is the outer edgeof the box, and s de�nes the length sale on whih the Gaussian tail deays.The normalised sattering from this pro�le is given by:Aor(q; s;Rh) = Sg(q; s;Rh) + V (Rh)�(qRh)� V (Ro)�(qRo)Vo + V (Rh)� V (Ro) : (9.14)Here �(qR) is the normalised form fator amplitude for a homogeneoussphere with a volume V (R) = 4�R3=3. And the normalised sattering ontribu-tion of the half-Gaussian isSg(q; s; r) = nqr �4rs+p2�(r2 + s2)�o�1�(2rs sin(qr) +p2� exp(�(qs)22 )�qrs2 os(qr) + r2 sin(qr)�



106 CHAPTER 9. ARTICLE III+2p2D[ qsp2℄�r2 os(qr)� qrs2 sin(qr)�� ;while the orresponding volume of the Gaussian pro�le isVg(s; r) = 2�s �4rs+p2�(r2 + s2)�The Dawson integral is given by D[y℄ = exp(�y2) R y0 exp(t2)dt and a numer-ial expression for this integral is given in Numerial Reipes [46℄. An expressionfor the sattering from a Gaussian-shaped pro�le has previously been reportedby H. Bagger-Jörgensen et al. [42℄, however, the published expression ontainserrors.We also use two maximum entropy (ME) [20℄[21℄[22℄ pro�les for analysingthe data. These pro�les are based on the assumptions that no hains enter themiellar ore, suh that '(r) = 0 for r < Ro. We furthermore assume knowledgeof the �rst two or three momenta of the pro�le. In general assuming knowledgeof the �rst m momenta of pro�le leads to an entropy funtionalS['℄ = Z 1Ro dr4�r2'(r) �K ln'(r) + mXn=0�nrn! ;where a uniform prior is assumed. Here �n is a set of Lagrange multipliers toensure them+1 onstraints of the momenta of the distribution '(r). The zerothonstraint ensures normalisation. Upon variation of the entropy funtional it isseen that the maximum entropy pro�le an be written as'm(r; a1; : : : ; am) = ( 0 r < RoB exp [�Pmn=1 an(r �Ro)n℄ r � Ro ;where B is a normalisation onstant, and the set of an's are related to theLagrange multipliers. We take these as �t parameters when �tting the sattering.For m = 2 the normalised pro�le sattering produed by this pro�le, henedenoted the ME2 pro�le, an be worked out for a2 > 0. This yieldsAor(q; a1; a2) =4a3=22 sin(qRo) + 2a2p�Re �Erf(x+ iy) exp(x2 � y2)(q + ib)ei	p�(2a2 + b2)qErf(x) exp(x2)� 2pa2 (a1 � 4a2Ro) q ; (9.15)where b = 2a2Ro�a1,  = 2xy�qRo, x = a1=(2pa2), and y = q=(2pa2). Refzgis the real part of the omplex number z, and Erf(z) is the omplementary errorfuntion of omplex argument; an expression for Erf(x+ iy) exp(x2�y2) is alsogiven in the appendix. In the limit of Rh ! Ro and a1 ! 0 both pro�lesonverges towards a simple Gaussian pro�le, and the two sattering expressions(9.14) and (9.15) are idential.



9.5. ANALYSIS AND MODELLING OF THE RESULTS 107We have also used a ME pro�le with m = 3 denoted the ME3 pro�le.The pro�le sattering was obtained by numerial Fourier transformation of thepro�le. The pro�le was represented by 500 pieewise linear segments in the rangefrom Ro to Ro + 6Rg, and an analytial expression for the Fourier transformwas used for the sattering from eah segment.The orona and pro�le sattering obtained from the MC simulations using(9.10) and (9.11) were �tted simultaneously by the orresponding theoretialexpressions (9.6) and (9.4), where we model the �utuation sattering by (9.13),and we model the pro�le by one of the three pro�les: box with a Gaussian tail(abbreviated BoxGauss), and a maximum entropy pro�le assuming knowledge ofthe �rst two or three momenta (abbreviated ME2 and ME3). The �t parametersfor the �utuation sattering are the radius of gyration Rg and the exludedvolume oe�ient �. The �t parameters for the radial pro�les are Ro and s forthe BoxGauss pro�le, while the �rst two or three an parameters are �tted forthe two ME pro�les. The �t range for the pro�le sattering was qb < 10 andqb < 4 for the orona sattering. The latter range is ditated by the fat thatthe Daniels expression is not valid for larger values of qb, as it fails to reproduethe rigid rod sattering behaviour observed at large q values.The results of �tting the model using the three pro�les to the simulationresults for the orona sattering and pro�le sattering are shown in �gures 1-4.For � < 1 all the �ts have redued hi-square value [43℄ �2red < 5, exept for thesimulations with the shortest hains L = 2b and L = 4b whih have a �2red < 30.These large values are due to the fat that the Daniels distribution is not validfor hains with so few statistial segments. In the � < 1 range the ME2 andME3 pro�les are idential sine the a3 parameter is estimated to zero withinthe statistial errors for the ME3 pro�le. For simulations with very large oreradii both ME �ts onsistently have somewhat smaller �2red values omparedto the BoxGauss pro�le �ts, however, for simulations with a low aggregationnumber, all three pro�les provide �ts of similar quality. The agreement betweenmodel and simulation data is exellent for surfae overage � < 1 for all threepro�les. However, for � > 1 the �ts provided by the ME2 pro�le are omparableto those using the BoxGauss pro�le, while the ME3 pro�le onsistently providessigni�antly better �ts, where �2red is redued by at least an order of magnitude.This vast improvement an be understood by observing the deviations shownin the high q part of orona sattering shown in �gure 1 and 2 for the largestsurfae overage. These deviations are aused by the inability of the pro�le inrepresenting the atual pro�le sattering, as shown in �gure 3 and 4, wherethe ME3 pro�le an be seen to give a muh better �t to the pro�le satteringompared to the BoxGauss and ME2 pro�les.Pro�les obtained by �tting the sattering and pro�les sampled during thesimulation are shown in �gure 5 and 6. They have been plotted using the sal-ing transformation of the orresponding simulation pro�le to avoid introduingartifats when omparing the two saled pro�les. For low surfae overages the�tted pro�les are very similar, and show a good agreement with the simulatedpro�les. For high surfae overages the ME3 pro�le give signi�antly better es-timates than the two other pro�les. These deviations at high surfae overagesare re�eted in the deviations in the pro�le sattering shown in �gures 3-4. The



108 CHAPTER 9. ARTICLE IIIdeviations in the viinity of the ore do not appear to have any e�et on thepro�le sattering.For � < 1 �tting the three pro�les yields idential estimates of the radiusof gyration and the exluded volume parameter, while for � > 1 signi�antdeviations are observed between the estimates provided by �tting the threemodel expressions. These are aused by the inability of the BoxGauss and ME2pro�les in �tting the sampled pro�le sattering and orona sattering at highq values. Both the radius of gyration and the exluded volume parameter areestimated from the orona sattering at high q values, and as a result of this weonly report the results obtained from the �ts using the ME3 pro�le.The radius of gyration obtained from the simulations is shown in �gure 7.For the simulations where the surfae overage is inreased by inreasing thenumber of hains or dereasing the ore radius show a radius of gyration with asimilar dependene on surfae overage. Radius of gyration estimated by the �tsis also shown, and they are in good agreement with the simulations results withless than 2% deviation for simulations with a low number of hains or large oreradius. Larger deviations (12% for the highest surfae overage) are apparentfor simulations with long hains.The insert in Figure 8 shows the �(�) parameters obtained from �ts usingthe ME3 pro�le. While this parameter also depends on the surfae overage andthe number of hains, the points from simulations varying number of hains,ore radius, and hain length ollapse on the same urve, whih shows a powerlaw dependene on surfae overage. The power law is �(�) = ��� with � =1:42 � 0:03 and � = 1:04 � 0:02. The simulations with the shortest hains anbe observed to deviate from this behaviour, whih we attribute to the Danielsform fator not being valid for suh short hains. Previously we have analysedthe sattering data using a self-onsistent approah [44℄, where the single hainsattering, sampled using (9.12) during MC simulations, was used in numeratorand denominator in the RPA expression (9.13). �(�) was derived by equating(9.5) and (9.6) in the �rst minima of the pro�le sattering where Sh(q) = 0,and a power law behaviour with � = 1:35 � 0:02 and � = 0:95 � 0:02 wasfound. This indiates that while �(�) shows a simple power law relation on�, the orresponding onstant and exponent shows a weak dependene on thepartiular expressions used for the hain and pro�le sattering.The forward sattering due to density �utuations is related to the osmotiompressibility � through a �utuation dissipation theorem, whih states thatthe osmoti ompressibility is inversely proportional to the q ! 0 limit of theFourier transform of the density �utuation orrelation funtion. For a polymersolution the observed sattering is due to density �utuations, and as a resultit is easy to obtain the osmoti ompressibility by extrapolating the observedsattering to the q ! 0 limit. For a miellar orona the sattering at low qvalues is dominated by pro�le sattering due to the average radial pro�le. Thusthe pro�le sattering dominates the sattering due to the density �utuations,making a simple extrapolation impossible, however, by modelling the pro�leand �utuation sattering separately as we have done in this paper is is trivialto obtain the q ! 0 limit of the �utuation sattering ontribution as �(�) =F�1RPA(q = 0) = 1 + �(�) just as for a polymer solution [24℄. The osmoti



9.6. CONCLUSIONS 109ompressibility is shown in �gure 8, the osmoti ompressibility an be seen tofollow a universal dependene on the surfae overage exept for high surfaeoverages where deviations due to a dependene on the number of hains andsurfae urvature an be seen.9.6 ConlusionsWe have presented Monte Carlo simulation results performed on the satteringfrom a mielle as funtion of number of hains, hain length, and ore radius.We have, furthermore, presented a novel empirial model expressions for thesattering from blok opolymer mielle with a spherial ore and that inludesthe e�ets of exluded volume interations. The orona sattering is representedas a sum of sattering ontributions due to the average radial density pro�le andthe density �utuations orrelations about this pro�le. We model the �utuationontribution to the sattering as that of a dilute/semi-dilute polymer solution.The proposed model depends on the radius of gyration, an exluded volumeparameter, whih is proportional to the apparent seond virial oe�ient, andan expression for the radial pro�le of the miellar orona. To our knowledge,there is no theoretial expression available for the radial pro�le exept in thehigh urvature limit. We used three empirial expressions for the orona pro�le,one with a box with a Gaussian tail and two maximum entropy estimates whereknowledge of the two or three �rst momenta was assumed. The model expres-sions for the orona sattering and pro�le sattering were simultaneously �ttedto the sattering obtained diretly from the MC simulations. These �ts show anexellent agreement for low surfae overages � < 1 for all three pro�les, whilethe ME3 pro�le shows an exellent agreement also for � > 1, where the Box-Gauss and the ME2 pro�le show signi�ant deviations at high q values for theorona sattering. These deviations are aused by the fat that the BoxGaussand ME2 pro�les provide a poor represention of the atual orona pro�le. Thisis re�eted in the estimates of radius of gyration and the exluded volume pa-rameter by these two models, as these are estimated from the high q behaviourof the orona sattering where the �utuation sattering dominates. For � < 1all pro�les provides idential estimates for the radius of gyration and exludedvolume parameter. Besides providing estimates for the radius of gyration andthe exluded volume parameter, the �ts also provide estimates for the radialpro�le, whih an be ompared to the atual radial pro�les obtained from theMC simulation.Pro�les obtained by �tting the simulated sattering are in good agreementwith the pro�les obtained diretly from simulations, exept for small deviationslose to the ore. For � < 1 the three pro�les obtained from the �ts of thesimulated sattering are very similar, however, at high surfae overages, theME3 pro�le yields a signi�antly better estimate for the radial pro�le.The �ts yields estimates of the radius of gyration whih are in good agree-ment with the radius of gyration obtained diretly from simulations. Plottingthe exluded volume parameter against redued surfae overage for simulationsvarying hain length, number of hains and ore radius shows that the results



110 CHAPTER 9. ARTICLE IIIapproximately fall on a ommon urve orresponding to a power law behaviour.However, the oe�ients and exponents are slightly di�erent from those we havepreviously obtained through a self-onsistent analysis, where simulation resultsfor the single hain sattering were used in the RPA expression for the oronasattering, thus forming a omplete self-onsistent expression for the oronasattering. This suggests that the power law behaviour is sensitive to the modelexpressions used for �tting the sattering.We have shown that the e�ets from hain onnetivity and exluded vol-ume interations between tethered hains on the sattering of a mielle with aspherial ore an be desribed by a relatively simple model, where the oronais modelled as a dilute/semi-dilute solution with a partiular radial pro�le. Wenote that this method of inluding onnetivity and exluded volume intera-tions e�ets in the sattering from olloidal aggregates an be generalised togeometries suh as mielles with elliptial and ylindrial ores. The models ofthe sattering from olloidal aggregates presented in the present paper allowsmore aurate and detailed information to be obtained from the analysis of ex-perimental results. We are urrently applying the expressions in the analysisof small-angle neutron ontrast variation data and small-angle x-ray satter-ing data for mielles of polystyrene-polyisoprene in deane. The results will bepresented in a future artile.



9.7. APPENDIX 1119.7 AppendixThe real and imaginary parts of G(x; y) = exp(x2 � y2)Erf(x + iy) an beseparated into real and imaginary parts using an in�nite series approximation[45℄ G(x; y) = ex2�y2Erf(x)� e�y22�x os(2xy)� 2� P1n=1 e�n24 �y2n2+4x2 fn(x; y)+i(� e�y2 sin(2xy)2�x � 2� P1n=1 e�n24 �y2n2+4x2 gn(x; y)) ;where fn(x; y) = 2x� 2x osh(ny) os(2xy) + n sinh(ny) sin(2xy)gn(x; y) = 2x osh(ny) sin(2xy) + n sinh(ny) os(2xy) :Here Erf(x) is the real omplimentary error funtion. An expression for itis given in Numerial Reipes [46℄. Evaluation of the two auxiliary funtions fnand gn an be optimised using the addition formulae in whih ase only osh(y)and sinh(y) need to be evaluated, and subsequent evaluations of osh(ny) andsinh(ny) require only a few simple arithmeti operations of prealulated on-stants.
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Figure 9.1: Corona sattering for simulations varying the number of hains or-responding to surfae overages � = 0:016; 0:13; 0:36; 0:72; 2:15;and 5:37 (topto bottom using symbols). Lines are model �ts. Dotted line: BoxGauss, dashedline: ME2, and solid line: ME3 pro�le.
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Figure 9.2: Corona sattering for simulations varying the ore radius orrespond-ing to surfae overages � = 0:13; 0:72; and 2:10, respetively (using box, dia-mond, and plus symbols respetively). Lines are model �ts. Dotted line: Box-Gauss, dashed line: ME2, and solid line: ME3 pro�le.
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Figure 9.3: Pro�le sattering for simulations varying the number of hains or-responding to surfae overages � = 0:016, � = 0:72 (shifted down one deade),and � = 5:37 (shifted down two deades). Lines are model �ts using BoxGausspro�le (dotted), ME2 pro�le (dashed line), and ME3 pro�le (solid line).
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Figure 9.4: Pro�le sattering for simulations varying the ore radius orrespond-ing to surfae overages � = 0:13 (shifted down two deades), � = 0:72 (shifteddown one deade), and � = 2:10. Lines are model �ts using BoxGauss pro�le(dotted), ME2 pro�le (dashed line), and ME3 pro�le (solid line).
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Figure 9.5: Redued radial density pro�les obtained from simulations varyingnumber of hains (symbols) and pro�les obtained by �tting the sattering us-ing the BoxGauss (dotted lines), ME2 (dashed lines), and ME3 pro�le (solidline). The �tted pro�les have been transformed using the parameters as for thesimulation pro�le. Simulation pro�les are shown for a number of hains orre-sponding to surfae overages � = 0:05 (irle), � = 0:72 (box shifted up 0:25),and � = 5:37 (diamond, shifted up 0:5).
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Figure 9.6: Redued radial density pro�les obtained from simulations varyingthe ore radius (symbols) and pro�les obtained by �tting the sattering using theBoxGauss (dotted lines), ME2 (dashed lines), and ME3 pro�le (solid line). The�tted pro�les have been transformed using the parameters for the simulationpro�le. Simulation pro�les are shown for a ore radius orresponding to surfaeoverages � = 0:13 (irle), � = 0:72 (box, shifted up 0:25), and � = 2:10(diamond, shifted up 0:5).



BIBLIOGRAPHY 121

10
-2

10
-1

10
0

10
1

σ

1.15

1.2

1.25

1.3

1.35

R
g/b

10
-1

10
0

σ

0

1

2

3

4

5

R
g/b
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124 CHAPTER 10. ARTICLE IVAnalytial alulations of sattering formfators of stars, branhed polymers and blokopolymer mielles for hains with exludedvolume interationsCarsten Svaneborg and Jan Skov Pedersen*Condensed Matter Physis and Chemistry Department, Risø National Labora-tory, DK-4000 Roskilde, Denmark*Present address: Department of Chemistry, University of Aarhus, Langelands-gade 140, DK-8000 Aarhus C, DenmarkA general formalism is presented for sattering of ayli polymer strutures, andexpressions for the form fator of arbitrary branhed polymers are derived. In additionexpressions are give for the form and intermoleular struture fator for mielles withan arbitrary ore geometry, and star polymers with arms onsisting of arbitrary blokopolymers. Exluded volume interations are inluded on the level of a linear hainthrough the applied sattering expressions. The results for opolymer stars are usedfor �tting sattering data obtained by Monte Carlo simulations for triblok opolymerstars with f = 2; 3; and 6 with and without interations.This is an inomplete draft of an artile, however, the theory setion isomplete and forms the majority of the artile. The draft artile will probablyonverted into two or three artiles, and generalised to strutures that inludeloops. Citations in this artile refer to the thesis referene list.



10.1. INTRODUCTION 12510.1 IntrodutionSattering tehniques, suh as light sattering, small-angle neutron or x-raysattering (LS, SANS and SAXS, respetively) are ideally suited for probingthe struture of olloidal suspensions [18℄. However, a prerequisite for the usefulappliation of sattering methods is the availability of expressions for the formand struture fator, orresponding, respetively to various geometrial modelsfor olloidal aggregates and to their interations, as this is a requirement foran aurate interpretation and modelling of experimental sattering data, fromwhih parameters related to the struture and interation of olloidal aggregatesan be extrated in an reliable manner.10.2 TheoryThe sattering from a solution of idential omposite partiles suh as miellaraggregates or strutures suh as branhed polymers onsists of two termsI(q) = F (q) +H(q):Here the �rst term is the form fator, i.e. the Fourier transform of the pair-distane distribution funtion between satterers within the omposite partile,and the seond term is the Fourier transform of the pair-distane distributionfuntion between satterers belonging to di�erent omposite partiles. This isthe intermoleular struture fator. By de�ning an apparent struture fator asSapp(q) = 1 + H(q)F (q) ;the total sattering an be reast in the simple form assoiated with the sat-tering from dispersions of mono-disperse spheres.I(q) = F (q)Sapp(q):The normalised (F (q = 0) = 1) form fator of a omposite partile is de�nedas F (q) =  Xk bk!�2*�����Xk �bkeiq�rk �����2+ :Here rk is a vetor desribing the loation of the k'th satterer in the om-posite partile, whih has an exess sattering length �bk. The average is over allthe possible onformations and orientations of the omposite partile or stru-ture. The omposite partile is assumed to onsist of a number of subunits whihould be subhains in branhed polymer strutures, bloks in blok opolymers,or orona and ore in the ase of mielles. In this aseF (q) =  Xk �k!�2*Xj;k �j�kAjk(q)+ ;



126 CHAPTER 10. ARTICLE IVwhere the interferene from pairs of sites in the j'th and k'th subunits isAjk(q) = (�j�k)�1  Xl Xi �bjl�bkieiq�(rjl�rki )! ;where jl and ki denote the subset of all the satterers ontained in the l'thand i'th subunit, respetively. The total exess sattering of the i'th subunitis �i = Pi�bki . Assuming that eah subunit has a referene point Ri, suhas the enter-of-mass of a solid partile, the end of a polymer hain, or theboundary between two adjaent bloks in a opolymer, we an de�ne the formfator amplitude of a subunit i asAi(q) =  Xi �bki!�1Xi �bkieiq�(rki�Ri):Using this de�nition the form fator amplitude is normalised to unity in thelimit of small q values, and the sattering from pairs of sites an be expressedas Ajk(q) = A�j (q)Ak(q)eiq�(Rj�Rk);where A�j denotes omplex onjugation of Aj . The form fator an be expressedin terms of subunit form fator amplitudes asF (q) / *Xj �2jA�jAj +Xj 6=k �j�kA�jAkeiq�(Rj�Rk)+ :If, for instane, subunits j and k are two distant bloks on a N -blok opoly-mer, then a unique path onsisting of steps from one blok boundary to thenext an be onstruted onneting the two referene points of the distant sub-partiles. The vetor onneting the two referene points is nothing more thanthe sum of all the vetors representing the individual steps. Thus assuming ingeneral that for any pair of subunits j and k a path of njk � 0 steps exists,denote by Rijk the i'th step in that path, and de�ne R0jk = Rk and Rnjkjk = Rj ,the vetor onneting the two referene points an be written in terms of indi-vidual steps as Rj �Rk = njkXi=1 �Rijk �Ri�1jk � :In this ase the form fator of the omposite partile isF (q) / *Xj �2jAjA�j +Xj 6=k �j�kA�jAk njkYi=1 eiq��Rijk�Ri�1jk �+ :At this stage no approximations have been made. However, if we assume thatwe an arry out the on�gurational and orientational average of the subunits



10.2. THEORY 127independently of eah other, whih orresponds to an assumption that the pair-distane distribution between sattering sites on di�erent subunits an be fa-torised into produts of site-to-referene, referene-to-referene, and referene-to-site probabilities, we an identity the form fator of the j'th subunit byFj(q) = DAjA�jE, whih is a real funtion, that only depends on the magni-tude of the q vetor due to the orientational average. If we furthermore assumethat the on�gurational and orientational average of the individual steps an bearried out separately, we an de�ne the phase fator of the i'th step betweensubunits j and k as 	ijk(q) = *eiq��Rijk�Ri�1jk �+ ;whih is the Fourier transform of the distane distribution of eah step. Forexample in the ase of a polymer onneting two subunits, the phase fator isthe Fourier transform of the end-to-end distane distribution of the onnetingblok. Subjet to these assumptions the normalised form fator [F (q = 0) = 1℄of the omposite partile isF (q) =  Xi �i!�28<:Xi �2i Fi + 2Xj<k �j�kAj  njkYi=1	ijk!Ak9=; :The expression for the form fator of a single omposite partile resemblesthe sattering expression for a solution of di�erent partiles, where the produtof phase fators plays the role of a partial struture fator between subunitsof the omposite partile. This is due to the somewhat arbitrary distintionbetween omposite partile and subunit.The Fourier transform of the pair-distane distribution between sites ondi�erent omposite partiles an be derived through an analogous argument,assuming that the on�guration, orientation and loation of di�erent partilesare unorrelated [110℄. Assuming one of the referene points oinide with theenter of mass of the omposite partile, then there exists a unique path ofnk � 0 steps (n = 0) onneting the enter (referene point denoted by index��) to the k'th referene point, where the i'th step is denoted 	ik. In this asethe inter-partile struture fator isH(q) =  Xi �i!�2(Xk �kAk  nkYi=1	ik!)2 (S(q)� 1) ;where S(q) denotes the enter-to-enter struture fator of the omposite par-tiles, whih has to be supplied by some other means, suh as PRISM theoryusing an e�etive interation potential between the omposite partiles. Theterm in the urly parenthesis plays the role of the form fator amplitude of theentire omposite partile as it an be identi�ed as the Fourier transform of theradial sattering length distribution [110℄.The expressions for the form fator and struture fator were derived assum-ing that di�erent omposite partiles, as well as di�erent sub-partiles within



128 CHAPTER 10. ARTICLE IVthe omposite partile, are unorrelated. These approximations are valid at lowonentrations of partiles, and in ases where the sub-partiles are not stronglyinterating, suh as miellar aggregates with a low surfae overage. It wasfurthermore assumed that subsequent steps between referene points were notorientationally orrelated, and that individual steps only depend on the radialdistane. These assumptions are valid for sub-partiles onneted by �exible andlong semi-�exible hain moleules.The expressions for the form and struture fator are geometrial statementsontaining only information about the relative positions of sub-partiles. Infor-mation about the pair distane distribution within a sub-partile is desribedthrough the form fator of that sub-partile, while the form fator amplitudeontains information about the distane distribution relative to the referenepoint, and the phase fator ontains information about the distane distribu-tion between two referene points, suh as the end-to-end distane distributionof the polymer hain onneting two sub-partiles. Interations between satter-ers within eah sub-partile is inluded in this desription through the partiularequations used to desribe these three ontributions to the sattering funtions.10.3 Subunits onsisting of hain moleulesFor a hain moleule we hose as referene point one of the ends. The three sat-tering funtion ontributions: the phase fator, form fator amplitude, and formfator, respetively, are the Fourier transforms of the end-to-end Pee, end-to-site Pes, and site-to-site Pss pair-distane probability distributions, respetively.These probability distributions are typially given by the same funtion, thatdesribes the probability that two sites on the hain, that are separated by aontour length l along the hain, are loated at a diret distane r from eahother. The sattering funtions are de�ned as	(q; L) = Z dr4�r2 sin(qr)qr Pee(r; L); (10.1)A(q; L) = Z L0 dl 1L Z dr4�r2 sin(qr)qr Pes(r; l); (10.2)and F (q; L) = Z L0 dl2(L� l)L2 Z dr4�r2 sin(qr)qr Pss(r; l); (10.3)where L is the total ontour length of the hain. These integral expressionsan be reast into sums over the number of segments using the substitutionsL = bN and l = bn, where b is the Kuhn length, and N the total number ofsegments. The Kuhn length of a semi-�exible hain is the segment length of theorresponding �exible hain, and thus it is a measure for the length sale belowwhih the hain e�etively beomes a rigid rod. The Kuhn length of a �exiblehain is idential to the step length of the hain as the diretion of subsequentsteps are unorrelated.



10.3. SUBUNITS CONSISTING OF CHAIN MOLECULES 129The most basi example is a randomly orientated in�nitely thin rigid rodwith length L. In this ase the end-to-end probability distribution is Pee(r; L) =Æ(L� r)=(4�r2). The rigid rod is speial as the ontour length l and diret dis-tane r are degenerate parameters, and only the ontour length integral has tobe performed. The end-to-internal point and internal-to-internal point distribu-tions are both given by Pes(r; l) = Pss(r; l) = �(L � r)Æ(r � l)=(4�r2), whereÆ(r� l) takes are of the degeneray. Here Æ(x) denotes the delta funtion, while�(x) denotes the step funtion. Using these distributions it is straight forwardto perform the integrations (10.1)-(10.3) and one obtains	rod(q; L) = sin(qL)qL ; Arod(q; L) = Si(qL)qL ;and Frod(q; L) = 2Si(qL)qL � 4(qL)2 sin2 �qL2 � ;where Si(x) = R x0 dy sin(y)=y is the Sin integral. The expression for the rod formfator was previous derived by Neugebauer [111℄. For a �exible hain withoutexluded volume interations, all the pair distane distributions are given by aGaussian distribution P (r; l) = � 32�bl� 32 exp �32 r2bl!Based on the Gaussian distribution the integrals (10.1)-(10.3) an be arriedout. The result for the form fator amplitude and form fator has previously beengiven by Hammouda [108℄ and Debye [71℄. Using the abbreviation x = (qRg)2where R2g = bl=6, the results an be stated as	o(x) = exp(�x) AH(x) = 1� exp(�x)x and FD(x) = 2[exp(�x)� 1 + x℄x2 :Semi-�exible hains without exluded volume interations are reasonablydesribed by the seond Daniels approximation [55, 58℄, whih is given byP (r; l) = � 32�bl�3=2  1� 5b8l + 2r2l2 � 3340 r4bl3! exp �3r22bl!The three sattering funtions an immediately be obtained by integratingthis distribution, and they an be written as a perturbation to the expressionsfor �exible hains as follows	Daniels(x;Nseg) = 	o(x) + x2N �1� 1115x� e�x;ADaniels(x;Nseg) = AH(x) + 130N �4� 4e�x + 11xe�x� ;and



130 CHAPTER 10. ARTICLE IVFDaniels(x;Nseg) = FD(x) + 115N �4 + 7x � �11 + 7x� e�x� :Here N is the number of statistially independent segments i.e. N =L=b.These expressions are valid when qb < 3:1 and l > 10b [52℄. The expression forthe form fator and phase fator was previously given in [58℄.For �exible hains with exluded volume interations the end-to-end, end-to-internal site, and internal-to-internal site distributions are ommonly regardedas being best desribed by the des Cloizeaux distribution [70℄, whih has theform P (r; ro) = Br�do � rro�2+� exp �D� rro�Æ! ;where ro = rDR2xy=dE is the averaged site-to-site distane, for instane theend-to-end Ree, end-to-site Res, or site-to-site Rss average distane, and d is thespae dimensionality. For a �exible hain with exluded volume interations thesite-to-site distane is related to the number of segments as DR2xyE = b2n2� =2(1+�)(1+2�)R2g , where n is the number of segments onneting the two sites, �the exluded volume length exponent, and Rg the radius of gyration of the hain.The two exponents Æ and � are given by Æ = 1=(1��) and � = (�1)=�, where is the entropi exponent of an exluded volume hain. In the limit of long �exiblehains renormalization group theory estimates the exponents as � = 0:588 and = 1:1619 for d = 3 [68℄. The  exponent vary slightly depending on whetherone onsiders the end-to-end, end-to-internal site, or internal-to-internal pairdistane distribution. This is due to the inreased degrees of freedom assoiatedwith the end points ompared to an internal point [60, 64℄. B and D are nor-malisation onstants, and they are �xed by requiring that R10 ddrP (r; r0) = 1and R10 ddrP (r; ro)r2 = hr2xyi, where ddr = 2�d=2rd�1=(�[d=2℄)dr is the volumeof an in�nitesimal spherial shell in d-dimensions.Based on this distribution the phase fator, form fator amplitude, and formfator an be alulated and expressed in terms of a series and an asymptotiexpansion valid at low and high q values, respetively. Details are given in theappendix. The results are summarised below using the following abbreviationsX = (1 + 2�)(1 + �)2 � (a)� (a+ b)(qRg)2; C = �[d=2℄� [a℄ ;a = 2 + d+ �Æ ; and b = 2Æ ;where �[x℄ is the Gamma funtion. Using these abbreviations the phase fatorhas an series expansion	(q;Rg) = C 1Xn=0 �[a+ bn℄(�X)n�[d2 + n℄n! ;



10.3. SUBUNITS CONSISTING OF CHAIN MOLECULES 131and an asymptoti expansion	(q;Rg) = CÆ2 1Xn=0 (�1)n�[a+nb ℄�[d2 � a+nb ℄n!X�a+nb :The form fator amplitude has a series expansionA(q) = C 1Xn=0 �[a+ bn℄�[d2 + n℄(2�n+ 1) (�X)nn! ;and an asymptoti expansionA(q) = C�[ 12� ℄�[a� b2� ℄2�� hd2 � 12� i X� 12�+C 1Xn=0 (�1)n� �a+nb �[b� 2�(a+ n)℄� hd2 � a+nb in!X�a+nb :The form fators based on the des Cloizeaux distribution was derived byUtiyama et al. [70, 112℄, and is stated here for the sake of ompleteness; theseries expression isF (q) = C 1Xn=0 � [a+ bn℄ (�X)n(1 + �n)(1 + 2�n)� hd2 + nin! ; (10.4)while the asymptoti expansion isF (q) = C� ha� b2� i� h 12� i�� hd2 � 12� i X� 12� � C� ha� b� i� h 1� i�� h Æ2 � 1� i X� 1�+Cb 1Xn=0 (�1)n� �a+nb �[b� 2�(a+ n)℄[b� �(a+ n)℄� hd2 � a+nb in!X�a+nb :The limit where hains are �exible and non-interating is given by d = 3,� = 0:5, and  = 0. In this ase the des Cloizeaux distribution redue to aGaussian distribution, and the des Cloizeaux sattering expressions redue tothe previously stated Gaussian expressions.All these sums an be written in the formS(qRg) = 1Xn=0 snan(qRg)�n = 1Xn=0 snebn+�nx where x = ln(qRg);and sn = sign(an) in whih ase the an onstants an be de�ned to be positive,e.g. if an = 0 then the hoie sn = 0 and an = 1 produe the same term. Asu�ient number of onstants bn = ln(an) an be alulated in advane, allowingthe sums to be estimated with the required preision, without a need for therepeated evaluation of Gamma funtions.



132 CHAPTER 10. ARTICLE IV10.4 Exluded volume interationsWhen writing the Fourier transform of the pair-distane distribution as a prod-ut of form fator amplitudes and phase fators, it was impliitly assumed thatthe pair-distane distribution ould be fatorised into a onvolution of indepen-dent site-to-referene, referene-to-referene, and referene-to-site probabilities.This is only true if the orrelations aused by interations between subunits anbe negleted. In the ase where the same probability distribution desribes anentire linear hain onsisting of several bloks, the interferene term an be al-ulated exatly. When assuming that the same pair-distribution desribes theentire hain, the interferene between two distant di�erent bloks j and k on alinear hain, separated by a ontour length of Lik, is given by the interfereneis given byAjk(q;Lj ; Ljk; Lk) = Z Lj0 dljLj Z Lk0 dlkLk Z 10 dr4�r2 sin(qr)qr Pss(r; lj + Ljk + lk);(10.5)where Pss is the site-to-site probability distribution. For a Gaussian distributionAjk(q;Lj ; Ljk; Lk) = AH(q; Lj)	o(q; Ljk)AH(q; Lk) where the form fator am-plitudes and phase fator was presented in the previous setion. For a exludedvolume hain the des Cloizeaux distribution is used, and a series expansion ofthe phase fator and performing the ontour length integrations, the interfer-ene term an be expressed, using the radius of gyration of the two bloks Rg;jand Rg;k and of the inter-onneting hain segment Rg;jk, asAjk(q;Rg;j ; Rg;jk; Rg;k) = C2 (f [Rg;2℄ + f [Rg;123℄� f [Rg;12℄� f [Rg;23℄) ;with the radius of gyration abbreviationsRg;12 = �R 1�g;j +R 1�g;jk�� ; Rg;23 = �R 1�g;jk +R 1�g;k�� ;and Rg;123 = �R 1�g;j +R 1�g;jk +R 1�g;k�� ;and the funtion f is given byf(R) =  R2Rg;iRg;k! 1v g ��[a℄(1 + �)(1 + 2�)2�[a+ b℄ q2R2� ;where g has a series expansiong(y) = 1Xn=0 �[a+ bn℄(�y)n(1 + �n)(1 + 2�n)�[d2 + n℄n!and an asymptoti expansiong(y) = �[a� b2� ℄�[ 12� ℄y� 12���[d2 � 12� ℄ � �[a� b� ℄�[ 1� ℄y� 1���[d2 � 1� ℄



10.5. ARBITRARY LINEAR BLOCK COPOLYMER 133+ 1Xn=0 b(�1)n�[a+nb ℄y�a+nb[b� 2(a + n)�℄[b� (a+ n)�℄�[d2 � a+nb ℄n! :In pratie the rossover between the series and asymptoti expansion shouldbe loated around y = 15.10.5 Arbitrary linear blok opolymerThe sattering from a linear opolymer onsisting of an arbitrary number ofbloks, interating with exluded volume interations is given byFlin(q) =Xi �2i Fi(q; Li) + 2Xj<k �j�kAjk(q; Ljk);here Li is the ontour length of the i'th blok, while Ljk = Pk�1i=j+1 Li is theontour length of all the bloks between the i'th and j'th blok. Note that it hasbeen assumed that the pair-distane distribution between bloks is still givenby the same des Cloizeaux distribution.10.6 Arbitrary branhed polymerFor an arbitrary branhed polymer there are two ontributions to the totalsattering: One from the form fator of individual sub-hains yielding an Fifor eah subhain, and another from interferene terms between all pairs ofdi�erent sub-hains. It is assumed that a unique path onsisting of steps fromone branh to the next branh exists, whih onnet any two sub-hains inan arbitrary branhed polymer. We then denote the i'th step from branh tobranh point between the j'th and k'th polymer segment out of njk � 0 stepsby 	(q; Lijk), where Lijk is the ontour length of the step along the hain. Hereit has been assumed that all sub-hains have the same Kuhn length, suh thatthe phase fator is only a funtion of the ontour length of a sub-hain. It is atrivial extension to inlude di�erent Kuhn lengths of the various segments. Inthis ase the pair distane distribution between any two sites on two di�erentsub-hains onsists of a step from the site on the j'th subhain to the referenepoint (yielding a fator Aj), eah of the njk steps the path onneting the twosites yields a fator, whih for the i'th step is 	(q; Lijk), and a step from thereferene point to a site on the k'th hain (yielding a fator Ak). The form fatorof the branhed polymer is the sum of the form fators of the individual sub-hains, and the sum of all suh possible paths between sites on hains weightedby the respetive sattering lengths.Fbranh(q) =  Xi �i!�20�Xi �2i Fi(q) + 2Xj<k �j�kAj(q)Ak(q) njkYi=1	(q; Lijk)1AThis expression have previously been given in the limit of Gaussian hains[19℄.



134 CHAPTER 10. ARTICLE IV10.7 Mielles with an arbitrary oreThe form fator of a mielle with an arbitrary ore geometry onsists of ontri-butions from sattering between the following sub-units: ore-ore, ore-hain,hain-hain on the same hain, and hain-hain between two di�erent hains.The referene point of the ore is the enter of mass, while referene point forthe tethered hains is the tethering point, i.e. the referene point of the hainsis the entire ore surfae. Index �h� denotes hains, �o� ore and �s� denotesthe surfae.The pair distane between a satterer in the ore and a hain is given by thestep from the ore satterer to the ore referene point (Ao), a step from the orereferene point to any tethering point on the surfae (	s), and from a tetheringpoint to any site on a hain (Ah). However, as the ore and ore surfae are�xed relative to eah other the orientational average has to be performed on theprodut of the respetive steps yielding a term proportional to hAo	siAh forthe ore-hain ontribution to the total sattering. The pair distane distributionbetween two sites on two di�erent hains an be regarded as a step from a siteon one hain to the tethering point of that hain (Ah), the step from onetethering point on the surfae to another tethering point (Fs), and a step fromthat tethering point to a site on the other hain (Ah), whih yields a termAhFsAh for the hain-hain sattering between di�erent hains. The satteringontribution from a pair of satterers within the same hain is proportional tothe hain form fator Fh. �h is the total sattering length of the orona andontains all sites within the orona, however, intra-hain sattering ontributes�2h=N while the inter-hain sattering ontributes �2h(N � 1)=N to the totalorona sattering length. Taking are to introdue all the numerial prefatorsthe form fator of a mielle beomesFmielle(q) = 1(�o + �h)2 ��2oFo + 2�o�h hAo	siAh+ 1N �2hFh + N � 1N �2hA2hFs� :Assuming that the enter of mass of the ore oinides with the enter ofmass of the mielle, we an also give the intermoleular struture fator of themielles. This onsists of the pair distane distribution from a satterer in theore to the enter of the ore, yielding a term Ao, and a ore-hain ontributionfrom the ore enter to any site on any hain. This onsists of a step from theenter of the ore to the surfae (	s), and a step from the tethering point toany site on a hain (Ah), yielding a term 	sAh. The result when the exesssattering lengths are inluded beomes [110℄Hmielle(q) = 1(�o + �h)2 (�oAo + �hAh	s)2 [S(q)� 1℄ :In the speial ase where the ore is spherial the phase and form fator ofsurfae, and the form fator amplitude and form fator of the ore, respetively,are given by



10.8. STARS OF ARBITRARY BLOCK COPOLYMERS 135	s(qRo) = sin(qRo)qRo Fs(qRo) = 	2s;and Ao = 3[sin(qRo)� qRo os(qRo)℄(qRo)3 Fo = A2o;where Ro denotes the radius of the ore. Inserting these expression in the miel-lar form fator will reprodue the model of Pedersen and Gerstenberg [106, 107℄.As orrelations between hains and the ore have been negleted hains are ableto enter the ore region, however, ore repulsion an be mimiked by inreas-ing the radius in the surfae expressions relative to the radius used in the oreexpressions.10.8 Stars of arbitrary blok opolymersThe form fator of a star polymer made of blok opolymers ontains threeontributions: The form fator of eah blok, the interferene between two blokson the same hain, and the interferene between two bloks on two di�erenthains. We denote the form fator amplitude of the j'th blok on the i'th hain asA(i)j , and the orresponding phase fator as 	ij. The interferene term desribingthe pair distane between two sites on blok j and l, respetively, on the i'thhain onsists of a jump from the site to the blok boundary losest to the othersite (providing a A(i)j fator), then a number of steps from blok boundary toboundary along the hain, eah step providing a phase fator until the referenepoint l is reahed yielding Ql�1�=j+1	(i)� . A step from the referene point to thesite on the blok provides a form fator amplitude A(i)l .Similarly the interferene term between two sites j and l on two di�erenthains i and k onsists of a jump from the site to the blok boundary losestto the star enter (providing a fator A(i)j ), then j � 1 steps between blokboundaries towards the enter providing a fator Qj�l�=1	(i)� , and a number ofsteps from the enter to the l'th blok boundary on the k'th hain providingQl�1�=1	(k)� , and a single step from the blok boundary to the site providing theform fator amplitude A(k)l .Let f be the number of arms, and ni the number of segments on hain i.Then, negleting the orrelations introdued by steri interations between thedi�erent arms and di�erent bloks, the normalised [Fstar(q = 0) = 1℄ form fatorof the star onsists of the sum of all suh paths onneting any two sites:Fstar(q) = 0� fXi=1 niXj=1�(i)j 1A�20BBBBBB� fXi=1 niXj=1 ��(i)j �F (i)j + 2 fXi=1 niXj; l = 1j < l �(i)j �(i)l A(i)j A(i)l l�1Y�=j+1	(i)�



136 CHAPTER 10. ARTICLE IV
+2 fXi; k = 1i < k niXj=1 nkXl=1 �(i)j �(k)l A(i)j A(k)l j�1Y�=1	(i)� l�1Y�=1	(k)� 1CCCCCCA : (10.6)Here F (i)j is the form fator, A(i)j is the hain form fator amplitude, 	(i)j isthe phase fator, and �(i)j is the exess segmental sattering length of the j'thblok on the i'th hain. Rg;ij denotes the radius of gyration of blok j on thei'th hain. We use a notation where Ql�=j 	i� = 1 if l < j. The orrespondingnormalised struture fator is given by the sum of all paths onneting any siteon any hain to the enter and it isHstar(q) = 0� fXi=1 niXj=1�ij1A�20� fXi=1 niXj=1�ijAij j�1Y�=1	i�1A2 (S(q)� 1) :10.9 Monte Carlo simulationsMonte Carlo simulations of the sattering from stars of semi-�exible triblokopolymers with and without exluded volume interations have been performed.The hains on the stars were modelled by a disrete Kratky-Porod model withL=b = 100 or 400 segments per arm. Exluded volume interations were in-luded by plaing six hard-spheres with radius � = 0:1b per Kuhn length ofthe hain. This is a hoie whih is known to reprodue the binary luster in-tergral of polystyrene in a good solvent [93℄. The sattering at homogeneousontrast (�1 = �2 = �3 = 1), as well as the sattering from the inner (�1 = 1,�2 = �3 = 0), middle (�2 = 1, �1 = �3 = 0), and outer (�3 = 1, �1 = �2 = 0)sattering have been obtained.10.10 Results and DisussionIn the speial ase of a triblok opolymer star with f arms eq. (10.6) redue toFstar(q) = f�1 (�1 + �2 + �3)�2 ��21F1 + �22F2 + �23F3+2 (�1�2A1A2 + �2�3A2A3 + �1�3A1A3	2)+(f � 1) ��21A21 + �22A22	21 + �23A23	21	22+2 ��1�2A1A2	1 + �2�3A2A3	21	2 + �1�3A1A3	1	2��	 ;This expression was �tted simultaneously to the simulation data using thefour sattering ontrasts alulated with the Daniels expressions for the formfators, form fator amplitudes, and phase fators and �tting the radius of gyra-tion of eah blok, as well as the number statistial independent segments in therange of qb from 0:1 to 10. The �ts shown in �gures 10.1 - 10.3 are in exellentagreement with the simulation results, and the redued �2red < 1:2 for all �ts.The form fator of triblok opolymer stars inluding exluded volume e�etson the linear level is given by



10.10. RESULTS AND DISCUSSION 137F exvolstar (q) = f�1 (�1 + �2 + �3)�2 ��21F1 + �22F2 + �23F3+2 [�1�2A(L1; 0; L2) + �2�3A(L2; 0; L3) + �1�3A(L1; L2; L3)℄+(f � 1) ��21A(L1; 0; L1) + �22A(L2; 2L1; L2) + �23A(L3; 2L1 + 2L2; L3)+2 (�1�2A(L1; L1; L2) + �2�3A(L2; 2L1 + L2; L3) + �1�3A(L1; L1 + L2; L3))℄g :(10.7)Here the form fator F and form fator amplitude A is given by eq. (10.4) and(10.5), respetively. Exluded volume interations within eah arm are aountedfor in this expression, while the exluded volume interations between armsignore the presene of the f � 2 arms. Hene for f = 2 eq. (10.7) inludesthe full exluded volume e�ets. Note the middle blok has twie the lengthof the other bloks. The form fator has been �tted to simulation results forthe sattering from a two-arm star with exluded volume interations and semi-�exibility. Fit parameters were the radius of gyration of the three bloks, andthe ritial exponents � and  as well as four �at bakgrounds that is added tothe sattering, thus e�etive exponents averaged over the entire star is obtained.These bakgrounds has the e�et of mimiking the e�ets of semi-�exibility onthe sattering. The �t has �2red = 2:7 and is shown on �gure 10.4.The �t yields the exponents � = 0:583 and  = 0:449. Renormalizationgroup theory [68℄ yields � = 0:588 and  = 1:1619 in the long �exible hainlimit.



138 CHAPTER 10. ARTICLE IV10.11 AppendixThe des Cloizeaux distribution [64, 60℄ isP (r; r0) = Bro � rro�2+� exp �D� rro�Æ!with ro = shR2ssid = sb2n2�d = Rgs2(1 + 2�)(1 + �)d ;where b is the Kuhn length of the hain and n the number of segments, whileRg is the radius of gyration. �,  are the ritial length and entropy exponent,respetively, whih for d = 3 is estimated to be � = 0:588 and  = 1:1619 fromRGT theory [68℄ for in�nite long �exible hains. The Gaussian limit is d = 3,� = 0:5, and  = 0 in this limit r2o=2 = b2n=6 = R2gB and D are normalisation onstants, derived from the zeroth and seondmomenta of the des Cloizeaux distribution:B = Æ� �d2�Da2�d=2�(a) D = �1d � (a+ b)� (a) �1=b ;where the following abbreviations are used: Æ = 1=(1��) and � = (�1)=�. Weuse the method and notation used by Förster and Burger[70℄. Sattering froma distribution is in arbitrary dimension given by	(q; ro) = Z 10 P (r; ro)0F1(d2 ;�(qr)24 )2� d2 rd�1�[d=2℄ dr:For d = 3; this redues to	(q; ro) = Z 10 P (r)sin qrqr 4�r2dr:The de�nition of the oF1 hyper geometri funtion is0F1(b; z) = 1Xn=0 �[b℄�[b+ n℄ znn! :Inserting the expression into the integral and integrating produes the seriesexpansion of the phase fator:	(q;Rg) = 2�d=2BÆDa 1Xn=0 �[a+ bn℄�[d2 + n℄n! ��(1 + 2�)(1 + �)2dD2=Æ (qRg)2�nWe an obtain the asymptoti expansion by rewriting the sum as	(q;X) = C 1Xn=0 �[a+ bn℄�[d=2 + n℄ (�x)nn! (10.8)



10.11. APPENDIX 139where the following abbreviations were useda = 2 + d+ �Æ b = 2Æ x = (1 + 2�)(1 + �)2dDb (qRg)2 C = �[d=2℄� [a℄ :Note that a series an be expressed as a omplex integral as1Xn=0 a(n)(�x)nn! = � Z +i1�i1 dz2�ia(z)�[�z℄xz ;where the integration path is hosen to inlude all poles of the Gamma funtion,whih are loated at zero and all positive (real) integers. The asymptoti seriesexpansion is obtained by summing the residues of all poles for Re(z) < 0, i.e.the poles of the prefator a(z) = �[a+ bz℄�[d=2 + z℄ ;whih are loated at a + bz = �m, where m is zero or a positive integer. Theresidue of the integrand in the m'th pole isRes[a(s)�[�s℄xs; s = �(a+m)=b℄ = �[m+ab ℄x�m+abb�[�m+ab + d2 ℄ ;whih yields the asymptoti series as	(q;X) = Cb 1Xm=0 (�1)m�[m+ab ℄x�m+ab�[d2 � m+ab ℄m! :The form fator is obtained by integrating the phase fator asA(q) = Z N0 dnN 	(q; ro(n))Inserting the sum, using r2o(n) = b2n2�=d, and interhanging the order ofthe sum and the integration, the integration an be arried out term by termyielding the series expansion of the form fator amplitude asA(q) = C 1Xn=0 �[2+d+�+2nÆ ℄�[d2 + n℄(2�n+ 1)n! ��(1 + 2�)(1 + �)2dD2=Æ q2R2g�n :The asymptoti expansion is derived analogous to that of the phase fator.Simple poles are loated at z = �(a+m)=b and z = �1=(2�) and summationof the orresponding residues yields the asymptoti expansionA(q;N) = C 0��[ 12� ℄�[a� b2� ℄x� 12�2�� h d2 � 12� i + 1Xm=0 (�1)m� �a+mb �x�a+mbm!(b� 2(a+m)�)� hd2 � m+ab i1A
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Figure 10.1: Triblok opolymer star (two arms) sattering for semi-�exiblehains without exluded volume interations (L=b = 100). Sattering for bulkontrast, inner blok, middle blok, and outer blok (from bottom to top usingboxes), �t (line).
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Figure 10.2: Triblok opolymer star (3 arms) sattering for semi-�exible hainswithout exluded volume interations (L=b = 100). Sattering for bulk ontrast,inner blok, middle blok, and outer blok (from bottom to top using boxes),�t (line).
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Figure 10.3: Triblok opolymer star (6 arms) sattering for semi-�exible hainswithout exluded volume interations (L=b = 100). Sattering for bulk ontrast,inner blok, middle blok, and outer blok (from bottom to top using boxes),�t (line).
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Figure 10.4: Triblok opolymer star (2 arms) sattering for semi-�exible hainswith exluded volume interations (L=b = 400). Sattering for bulk ontrast,inner blok, middle blok, and outer blok (from bottom to top using boxes),�t (line).
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Chapter 11ConlusionThe aim of the work presented in this thesis was to investigate the satteringfrom diblok opolymer mielles with a spherial ore using Monte Carlo (MC)simulations. The purpose of the simulations was to formulate an expressionfor the miellar form fator, that an be used when analysing experimentalsattering data. Using the solution pro�le sattering to represent the orona formfator suh an expression was formulated, and the expression was validated usingself-onsistent analysis based on Monte Carlo simulation data in artile II. TheseMC simulations were performed varying the number of hains, hain lengthand ore radius within the experimentally available range of surfae overagesfor diblok opolymer mielles. The orona form fator was obtained diretlyfrom simulation results for the intra-hain and inter-hain sattering, while thesolution pro�le sattering was derived based on the simulation sattering resultsfor the intra-hain and orona form fator amplitude. Comparing the two resultsfor the orona form fator shows an exellent agreement for all simulation data,even at the highest surfae overages. This demonstrates that the sattering fromthe miellar orona an be regarded as being that of a quasi two dimensionaldilute/semi-dilute polymer solution, a solution that is on�ned to the miellarorona region given by a radial pro�le with a width omparable to the hainradius of gyration. The omparison shows that the polymer solution satteringan be aurately approximated by an RPA approximation.Artile I investigated the validity of the model due to Pedersen and Gersten-berg. This model inludes e�ets due to single hain sattering and approximatesthe e�ets of ore expulsion, but it neglets exluded volume interations withinthe orona. The onlusion was that this model provides reasonable aurateestimates of the radius of gyration and the orona enter of mass distane fromthe ore enter for surfae overages less than unity, while deviations inreasedfor inreasing surfae overages above unity. The solution pro�le expression forthe orona form fator inludes exluded volume interations as well as oreexpulsion, and the expression provides exellent �ts to the observed satteringwhih was shown in artile III. The estimated parameters have been omparedto the same parameters obtained diretly from the MC simulation, and it wasshown that very aurate estimates for the radius of gyration and the shape ofthe radial pro�le are obtained for all simulations. This has validated the pro-145



146 CHAPTER 11. CONCLUSIONposed solution pro�le expression for the orona sattering, not just as being agood desription of the orona form fator, but also as an exellent tool forestimating physial parameters from the experimental sattering data.The solution pro�le onept also allows sattering due to the average ra-dial pro�le and sattering due to density �utuations within the pro�le to beseparated, even though the sattering due to the radial pro�le is the dominantontribution to the orona form fator for low q values. This enables the sat-tering due to density �utuations in the forward diretion to be obtained usingboth an model �tting approah and a self-onsistent approah. This has enabledthe extration of the orona ompressibility and apparent seond virial oe�-ient due to the hain interations within the miellar orona from the simulatedsattering.The osmoti ompressibility has a universal dependene on surfae over-age, with small deviations at very high surfae overages, whih we attribute toa weak dependene on surfae urvature and number of hains. The apparentseond virial oe�ient for all simulations approximately ollapses onto a om-mon power law relation, and the power laws obtained from the self-onsistentanalysis and model �tting approahes are in reasonable agreement. The osmotiompressibility and apparent seond virial oe�ient have an dependene onredued surfae overage analogous that of an ordinary polymer solution on theredued onentration =�, hene validating the laim that the miellar oronaan be regarded as a quasi-two dimensional polymer solution.Artile IV provides a way of alulating the form fator and struture fatorof polymer strutures suh as star opolymers, branhed polymers, opolymermielles, and other strutures that an be regarded as onsisting of a number ofonneted subunits. General expressions are presented for the form and stru-ture fator for the polymer strutures at level of approximation of the model ofPedersen and Gerstenberg, i.e. interations between subunits are negleted, how-ever, it is shown how to inlude exluded volume interations between subunitson a linear hain, suh as the e�ets of exluded volume interations betweenbloks in a opolymer. The formalism requires the knowledge of phase fators,form fator amplitudes, and form fators for all the subunits, for a polymer.These are the Fourier transforms of the end-to-end, end-to-internal site, andinternal-to-internal site distane distributions. In the artile, results are pre-sented or reviewed for subunits onsisting of �exible and semi-�exible hains, aswell as hains with exluded volume interations.Expressions without exluded volume interations have been �tted simul-taneously to four ontrasts of a triblok opolymer star with two, three andsix arms, respetively, and the �ts are in exellent agreement with the simula-tion results. An expression with exluded volume interations has, furthermore,been �tted to a triblok opolymer star with two arms, e.g. a linear pentablokopolymer, and this �t also shows exellent agreementThe artiles and the present thesis desribe some new simulation tehniques.The hain reation tehnique using a virtual zeroth bond have lead to a on-siderable simpli�ation of reating a hain with a partiular on�guration, andhas signi�antly simpli�ed the omputational task of orreting vertex positionsfor numerial errors introdued by the repeated pivot moves ompared to the



11.1. SUGGESTIONS FOR FUTURE WORK 147tehnique due to Stellman and Gans [102℄. A hybrid Fast-Fourier-Transform al-gorithm for sampling the sattering on a logarithmially distributed q sale hasbeen presented, whih greatly redues the time required for sampling the partialsattering ontributions.A prerequisite for an aurate analysis and interpretation of experimentaldata is the existene of advaned models. This thesis and the artiles inludedhave shown that a relatively simple expression exists for the sattering fromdiblok opolymer mielles. And a general formalism for alulating form fatorsof polymer mielles and branhed polymer strutures has been presented. It isthe author's hope that the results presented in the report will be applied forinterpreting experimental sattering results, and provide not only informationbut also knowledge about the struture of omplex �uids.11.1 Suggestions for future workThe hapter summary of artiles ended by proposing a generalisation of thesattering from a mielle with an arbitrary ore geometry by reasting theorona sattering expression using a solution pro�le sattering term. However,this expression has yet to be heked using simulation results. Simulations ofthe sattering from mielles with end-apped ylindrial ores have already beenperformed, but has yet to be analysed. It would also be interesting to performsimulations with surfae overages in the brush regime, to ompare Monte Carloresults with the many theories that exists in this limit, and, for instane, to in-vestigate the ompressibility dependene on surfae urvature and number ofhains.All the simulations in this thesis have been performed for an athermal sol-vent. This is su�ient to provide aurate expressions for the sattering frompolymers in a good solvent, however, it would be interesting to inlude an hain-hain interation potential suh that, for instane, the e�ets of the sreenedeletrostati interations polyeletrolyte orona ould be investigated.The RPA approximation in the solution pro�le sattering ontribution worksvery well within the range of surfae overages simulated, but a full PRISMtreatment of the miellar orona should be possible, and this would yield thediret orrelation funtion (q) as funtion of number of hains, hain length, andore radius. This would provide an expression for the solution pro�le satteringwhih does not rely on the RPA approximation.The e�ets due to the struture fator has yet to be explored. In the hapterwith the summary of artiles an equation for the struture fator using thesolution pro�le expression was proposed for a miellar solution, however, theenter-to-enter struture fator S(q) is assumed to be given in this expression.However, this enter-to-enter struture fator should also be amenable to aPRISM treatment for instane by de�ning an e�etive mielle-mielle potentialbased on the degree of overlap of the two miellar oronas, whih in a mean �eldapproah is simply provided by the overlap of the radial monomer distributionsfor two mielles.In artile three maximum entropy (ME) estimate for the radial pro�le was



148 CHAPTER 11. CONCLUSIONproposed based on knowledge of the �rst two/three moments of the pro�le.These parameters were subsequently obtained by �tting the orona form fa-tor amplitude based on the ME pro�le to the simulated sattering. It shouldbe possible to formulate a diret maximum entropy expression that providesthe orona pro�le by maximising the entropy subjet to the onstraints posedby the known sattering data without the assumption that the pro�le an berepresented by a partiular funtional expression.The formalism for alulating form and struture fators, whih generallyneglets exluded volume interations, has been extended to inlude exludedvolume interations on the level of linear moleules. An interesting problemwould be how to introdue orrelations due to interations for instane betweenthe arms of star polymers. Renormalization group theory alulations for thesattering from star polymers with exluded volume interations exist, and simi-lar tehniques would probably be required for the general problem of introduinginterations. An alternative approah would be to add some general expansionthat approximate the e�ets due to exluded volume interations, where theexpansion parameters ould be obtained by �tting numerial simulations. Thiswould provide a general method for parameterising Monte Carlo sattering re-sults from polymer strutures.
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