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Chapter 1

Abstract

Diblock copolymers dissolved in a selective solvent self-assemble into micellar
aggregates. These aggregates consists of a diffuse corona of the dissolved blocks
and a dense core of the insoluble blocks. The corona scattering has been investi-
gated using the Monte Carlo simulation technique. The corona was represented
as a number of chains tethered to a spherical core, chains interacted through
excluded volume interactions and they were excluded from the core region. The
corona scattering of a micelle contains information about single chain proper-
ties, such as the radius of gyration, as well as overall properties such as the
radial monomer profile. The corona scattering can be separated into two contri-
butions, one due to intra-chain and another due to inter-chain scattering. The
corona scattering can, furthermore, be regarded as being caused by an average
radial profile (as in a core-shell model) and a scattering contribution due to
density fluctuation correlations about this average radial density profile. These
fluctuations are caused by chain connectivity and chain-chain interaction effects
such as the "correlation hole". The fluctuation scattering carries information
about the compressibility of the corona.

Simulations were performed systematically varying the number of chains in
the corona, the chain length, and core radius corresponding to surface coverages
in the experimentally accessible regime for diblock copolymer micelles. During
simulations the partial scattering contributions due to intra-chain and inter-
chain scattering as well as the scattering due to the radial profile were sampled.
Properties such as the single-chain radius of gyration, chain center-of-mass dis-
tance to the core, and the radial monomer profile were also sampled.

The model of micelle scattering due to Pedersen and Gerstenberg [J.S. Ped-
ersen and M.C. Gerstenberg, Macromolecules (1996), 29, p. 1363] neglects the
effects of excluded volume interactions. The validity of this model, which can
estimate the chain radius of gyration and center-of-mass distance from the core,
was investigated using simulated scattering data. The conclusion was that the
model provides accurate estimates of for low surface coverages, but that the
estimates get progressively worse as the surface coverage is increased.

Using a self-consistent analysis of the simulation data it was shown that
the corona scattering can be very accurately represented by a weighted average
between a core-shell model and a Random Phase Approximation (RPA) expres-
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sion, where the core-shell model represents the scattering contribution due to
the radial profile, and the RPA expression describes the fluctuation scattering
contribution. The RPA approximation depends on the intra-chain scattering
and an excluded volume parameter proportional to the apparent second virial
coefficient. The resulting expression is denoted solution profile scattering as it
has the interpretation of being the scattering from a two dimensional layer of
dilute/semi-dilute polymer solution confined in a shell around the micelle sur-
face with some radial density profile. The polymer solution can be regarded as
being two dimensional since the width of corona is comparable to the radius of
gyration of the corona chains.

The forward scattering due to density fluctuations can easily be obtained
in this approach, and this provides the osmotic compressibility of the corona.
The compressibility obtained from the self-consistent analysis shows an univer-
sal dependence on the reduced surface coverage, since compressibilities obtained
from simulations varying number of chains, chain length, or core radius collapse
onto a common curve. The corresponding apparent second virial coefficient fol-
lows an approximate power law as function of reduced surface coverage. The
corona compressibility shows a surface coverage dependence analogous to that
of a polymer solution as function of reduced concentration ¢/c*. This validates
that the micellar corona can be regarded as a quasi-two dimensional polymer
solution.

The solution profile scattering expression has also been used for fitting the
Monte Carlo simulation data. The expression depends on the single chain radius
of gyration, an excluded volume coefficient, and a radial profile of the corona.
Excellent fits were obtained within the entire range of experimentally available
surface coverages using a Maximum Entropy estimate for the corona profile.
The radius of gyration and the corona profile were estimated by the fits, and
these were found to be in very good agreement with results obtained directly
from the Monte Carlo simulation.

A formalism for the form factor and structure factor of connected acyclic
polymer structures was developed based on a generalization of a diagrammatic
interpretation of the micelle scattering model due to Pedersen and Gerstenberg.
Some examples of structures described by this formalism includes micelles with
an arbitrary core geometry, branched polymers, and copolymer stars. The for-
malism include excluded volume effects on the level of a linear chain, and an
expression for the form factor of a copolymer with excluded volume interactions
is given. Expressions for the form factor of a triblock copolymer star with and
without excluded volume interactions have been derived using the formalism,
and fitted to Monte Carlo simulations results for the scattering without excluded
volume for f = 2,3, and 6 arms. Scattering was sampled for the entire star as
well as the individual blocks yielding scattering for four different contrasts in
total. The simulated scattering results with excluded volume interactions for tri-
block copolymer stars with f = 2 arms have also been fitted. These fits show an
excellent agreement between the simulated scattering results and the theoretical
form factor.
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Resumé

Nar diblokcopolymere oplgses i et oplgsningsmiddel, der er godt for den ene
blok og darlig for den anden blok, danner copolymerene en micelle bestaende
af en diffus korona af den oplgste blok og en taet kerne af den uoplgselige blok.
Koronaspredningen er blevet undersggt med Monte Carlo simulationsteknikker.
I simulationerne blev koronaen repraesenteret som et antal af kaeder, der sidder
fast pé en kugleformet kerne. Kaederne vekselvirkede med “excluded volume”
vekselvirkninger, og var udelukket fra kernen.

Koronaspredningen fra en micelle indeholder information om enkeltkaede
egenskaber s& som kaedernes gyrationsradius og radialfordelingen af monomerer.
Koronaspredningen har to bidrag, et fra intraksede og et fra interkaede spred-
ning, dvs. spredning fra den enkelte ksede og spredning mellem kseder. Ko-
ronaspredningen kan ogsa opfattes som varende summen af to bidrag fra spred-
ningen fra gennemsnits radialprofilen (en kerne-skal model) og fra korrelationer
af teethedsfluktuationer. Disse fluktuationer skyldes, at keederne er sammen-
haengende og kaede-kaede vekselvirkninger som for eksempel “korrelations hullet”.
Fluktuationsspredningsbidraget indeholder information om koronaens kompres-
sibilitet.

Simulationer er blevet udfgrt, hvor antallet af keeder, keedelaeengde og kerne-
radius systematisk er blevet varieret svarende til de overfladetaetheder, der kan
opnas eksperimentelt for diblokcopolymer miceller. Under simulationerne blev
spredningsbidrag sa som intraksede- og interkaedespredningen samt spredningen
fra radial profilen indsamlet. Egenskaber som enkeltkaede gyrationsradius, den
gennemsnitlige afstand fra kaedernes massemidtpunkt til kernen og radialprofilen
af monomere blev ogsa indsamlet.

Modellen for micellespredningen, der er foresldet af Pedersen og Gersten-
berg [J.S. Pedersen and M.C. Gerstenberg, Macromolecules (1996), 29, p. 1363,
negligerer effekterne af excluded volume vekselvirkninger. Gyldigheden af denne
model er blevet undersggt ved hjalp af data fra simulationer. Konklusionen var,
at for sma overfladetaetheder giver modellen pracise estimater for enkeltkaede
gyrationsradius og kaedernes massemidtpunkts afstand til kernen, men at esti-
materne bliver darligere, som overfladetaetheden gges.

Ved hjxlp af en selvkonsistent analyse af simulationsdata blev det vist, at
koronaspredningen kan repraesenteres meget praecist som et veegtet gennemsnit
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mellem en kerne-skals model og et Random Phase Approximation (RPA) udtryk,
hvor kerne-skals modellen reprasenterer spredningsbidraget fra koronaens pro-
fil, mens RPA-udtrykket beskriver spredningsbidraget fra taethedsfluktuationer.
RPA-udtrykket atheenger af intrakaede spredningen og af en excluded volume
parameter, der kan vises at veere proportional med den anden virial koefficient.
Det resulterende udtryk kan fortolkes som spredningen fra et to-dimensionalt lag
af en “dilute/semi-dilute” polymeroplgsning med en vis radialprofil. Udtrykket
kaldes derfor oplgsningsprofilspredning. Polymeroplgsningen kan opfattes som
vaerende to-dimensional fordi koronaens tykkelse er ssmmenlignelig med korona-
kaedernes gyrationsradius.

Den fremadrettede spredning fra taethedsfluktuationerne kan let udregnes
med oplgsningsprofilsprednings udtrykket, og det giver den osmotiske kompres-
sibilitet af micellens korona. Kompressibiliteten fra den selvkonsistente analyse
har en universal afhaengighed af den reducerede overfladetaethed fra simula-
tioner, hvor antallet af keeder, kaedeleengde og kerneradius falder pa den samme
kurve. Korona kompressibiliteten har en overfladetaethedsathaengighed, der er
analog med koncentrationsatheengigheden af ¢/c¢* for en polymeroplgsning. Dette
indikere at micelle koronaen kan opfattes som en kvasi-to-dimensional polymer-
opldsning.

Oplgsningsprofiludtrykket er ogsa blevet fittet til Monte Carlo simulations-
data. Udtrykket afhsenger af enkeltkeede gyrationsradius, en excluded volume
parameter og et udtryk for koronaens radialprofil. Ved hjalp af et Maximum
Entropi estimat for koronaens radialprofil er der opnaet fortreeffelige fits for alle
simulationer. Fra disse fits blev enkeltkaede gyrationsradius og koronaens radial-
profil fundet, og disse er i meget god overensstemmelse med resultaterne, der
blev indsamlet under Monte Carlo simulationerne.

Pa basis af en diagrammatisk fortolkning af det af Pedersen og Gerstenberg
foresldet modeludtryk for micelle spredningen er en formalisme for udregnin-
gen af formfaktorer og strukturfaktorer af sammenhaengende acykliske polymer
strukturerer blevet udviklet. Miceller med en arbitraer kernegeometri, forgrenede
polymere og copolymerstjerner er nogle af de strukturere, hvis spredning kan
udregnes med formalismen. Formalismen kan inkludere excluded volume veksel-
virkninger p& samme niveau som for en linezr kade, og et udtryk for form-
faktoren af copolymer med excluded volume vekselvirkninger gives. Ved hjelp
af denne formalisme er formfaktoren for en triblokcopolymerstjerne udregnet
med og uden excluded volume vekselvirkninger. Disse udtryk er blevet fittet til
Monte Carlo simulationsresultater for spredningen uden excluded volume veksel-
virkninger for f = 2,3 og 6 arme, og med excluded volume vekselvirkninger for
f = 2. Under simulationerne blev spredningen indsamlet for hele stjernen samt
for de tre blokke svarende til spredningsbidragene for fire forskellige kontraster,
og alle fire kontraster blev fittet samtidigt. Disse fits viser en fortreeffelig over-
ensstemmelse mellem simulerede spredningsresultater og de teoretiske udtryk.
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Introduction

Complex fluids exhibit many interesting phenomena. They have structures on
a mesoscopic scale, and the presence of these structures yield a surprising re-
sponse to the presence of external fields such as shear, electrical, or magnetic
fields. Some examples are for instance shear-induced birefringence of polymers
solutions, electrical field-induced birefringence of liquid crystals, and the order-
ing of ferro-liquids in external magnetic fields [1, 2, 3]. Complex fluids can also
behave as solids on short time scales, and as fluids on long time scales. Examples
of complex fluids are mud, toothpaste, paint, shampoo, and liquid crystals as
well as many biological fluids such as cell cytoplasm and blood. Thus complex
fluids are quite common, but their behaviour are qualitatively different from
“simple” fluids.

Complex fluids consisting of a colloid suspension of large particles or molecules
can self-assemble in numerous structures, depending on the shape of the colloidal
particles or molecules and their interactions. Solutions and melts of polymers
and copolymers offer a system, where the architecture and chemical properties
of the polymers can be designed and numerous structures can be obtained as a
result [4].

A copolymer consists of a sequence of chemically different blocks of poly-
mers joined end-to-end forming a long linear molecule. Copolymers are unable
to undergo macroscopic phase separations, but micro-phase separations are pos-
sible. The structure of the micro-phase separated domains are determined by a
minimisation of the surface energy between domains of different blocks, how-
ever, the entropy of stretching polymers chains also affects the shape of these
domains[5]. Diblock copolymers can also self-assemble into micellar aggregates
in a solvent that is selective for one block [6]. Many possible core geometries
such as spherical, elliptical, and cylindrical cores are possible. Spherical mi-
celles can, furthermore, order in crystalline structures such as body-centered
or face-centered cubic crystals depending on the range of the micelle-micelle
interactions, and cylindrical micelles can order into hexagonal rod structures
[7, 8].

Polymers are also used for modifying the mechanical, chemical or biological
properties of solid or liquid surfaces [9, 10, 11]. Diblock copolymers, for instance,
provides a macromolecular analogy of amphiphilic molecules [12], and can be
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used to modify the properties of a liquid surface or by adsorbing at a solid
interface.

Grafting polymers onto the surface of a colloid aggregate introduces a re-
pulsive interaction between aggregates, which inhibit coagulation and/or coales-
cence behaviour. The repulsive interactions is due to the fact that the polymer
configurational degrees of freedom is reduced if it is squeezed between two col-
loidal aggregates. This leads to a decrease of the configurational entropy [13],
and is the cause of the repulsive interactions between the colloidal particles.
Tethering polymers to a surface can act as a lubricant or an adhesive between
surfaces [14, 15], and tethered polymers can increase biocompatibility and in-
hibit protein adsorption [10, 16]. Lipid vesicles (liposomes) protected by diblock
copolymers have also been suggested for drug delivery systems. Drug molecules,
dissolved in the lipid layer or the interior, are protected from enzymatic degra-
dation by the copolymers, and from being filtered from the blood stream in the
liver or kidneys [17].

Advances in polymer synthesis allow good control over the polymerisation
process, and existing techniques can realize many polymer architectures such as
those shown in figure 3.1. Structures can be mapped out in terms of structural
phase-diagrams by systematically varying the polymer architecture and exper-
imental parameters such as concentration, solvent quality, and temperature.
These can be used to formulate and test theories that relate polymer archi-
tecture and experimental parameters to structure, and test theories predicting
the macroscopic mechanical, rheological, electric or magnetic properties of the
complex fluids. This yields information about the basic physical processes that
leads to the emergence of structures in complex fluids, and an understanding
the physical processes allows the structure of complex fluids to be designed for
practical applications.

Various techniques exist for probing the structure of complex fluids [18], how-
ever, small-angle X-ray and neutron scattering techniques are ideally suited for
obtaining detailed structural information. Unfortunately scattering techniques
do not yield a picture of the structure such as real space methods like mi-
croscopy, nor is there in general an easy way of inverting the results from a
scattering experiment to obtain the structure. This is in a very real sense due to
a very complex and convoluted dependence of the measured scattering on the
structure of the complex fluid.

One way to infer structure from scattering data is to fit structural models
to the observed scattering. Fach model represents the expected scattering from
an analytical model of a structure or is the result of a parametrisation of results
from simulations. This provides a “tool box” of models that can be fitted to the
experimental data, i.e. free the model parameters must be optimised in order
for the model scattering to agree with the experimentally observed scattering.
If a good agreement is obtained, it suggests that the structure present in the
sample is the same structure as that represented by the model, and that the
parameters estimated by the fit procedure are most likely to correspond to the
“real” values of those parameters [19].

The aim of the present thesis is to present and validate an expression for the
scattering from dilute solutions of diblock copolymer micelles with a spherical
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core. Monte Carlo simulations of a mesoscopic micelle model has been used to
obtain the scattering that would be obtained from an almost ideal scattering
experiment. Hence, any scattering expression can be compared to the scatter-
ing from a micelle in the ideal case, where in principle the scattering is exact
(except for statistics due to a finite number of samples) and the real values of
all parameters are known in advance.

3.1 Polymers

Polymers are string-like objects consisting of a long sequence of monomers. The
most important property of a polymer is the conformational entropy associ-
ated with the many internal degrees of freedom of a chain [4]. The entropically
favoured configuration of a polymer is that of a random walk, however, the
configuration is also influenced by the difference between monomer-monomer
and monomer-solvent interactions. These are effectively the same in a ©-solvent
and as a result monomers are approximately non-interacting, in which case the
configuration is only determined by the entropy.

In a bad solvent monomer-solvent interactions are very unfavourable com-
pared to monomer-monomer interactions, and as a result compact “collapsed”
polymer configurations are energetically favourable. However, in a good solvent
monomer-solvent interactions are negligible compared to monomer-monomer in-
teractions in which case the each monomer will be surrounded by a volume from
which other monomers are excluded. Hence the name “excluded volume” inter-
actions. The preferred configuration of a polymer in a good solvent will be that
of a self-avoiding random walk, and the chain will swell relative to an non-
interacting random walk. In the limit where the monomer-monomer potential
can be regarded as a hard-sphere potential, the enthalpy is either infinite or zero,
and the free energy is independent of temperature i.e. an athermal solvent.

Varying the polymer concentration in a good solvent yield three qualitative
different regimes [20, 21]: dilute solution, semi-dilute solution, and a melt. In
a dilute solution each polymer is far from other polymers and the solution can
be regarded as an ideal gas of hard spheres, where each hard sphere has a
characteristic size given by the radius of gyration of the polymer. The solution
enters the semi-dilute regime when the polymer density exceeds the overlap
density, which is defined by the inverse of the volume occupied by one polymer
chain in an unperturbed configuration. Polymers will inter-penetrate each other
forming a transient network of intermeshed chains above the overlap density.
The characteristic chain size of dilute solutions is replaced by a characteristic
mesh size or correlation length in semi-dilute solutions, which defines a length
scale above which no correlations due to polymer connectivity persists, and
below which interactions between different chains are negligible. If no solvent
is present, i.e. the volume fraction of polymer is unity, polymers will be in a
melt state. The preferred chain conformation will be that of a non-interacting
random walks as predicted by Flory [22]. This can be understood as follows: in
a good solvent the enthalpy contribution from monomer-monomer interactions
decreases as the chain swells, however, in a melt swelling would not decrease
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the number of the monomer-monomer contacts as there is no free space to
swell into. As a result the enthalpy is unaffected by swelling, and the preferred
configurations will be the non-interacting random walk configurations favoured
by the entropy .

3.2 Tethered chains

Polymers can be tethered to a surface by one end, thus forming a diffuse layer
on the surface [9]. Some tethered chain structures are shown in figure 3.2. The
equilibrium properties of a tethered polymer layer at an impenetrable surface
in a good solvent follow from the balance between entropic forces and excluded
volume interactions. The latter favour a state with a minimum of monomer-
monomer contacts, e.g. a state with a low density of monomers. Such a state
can be achieved by increasing the available volume per chain, i.e. by the chain
stretching away from the surface. Entropic forces, however, will tend to maximise
the number of available chain configurations by opposing the chain stretching
and by shifting the corona away from the surface to some extent. If the inter-
face is convex a chain can get a relative larger available volume by stretching
compared to flat interfaces. As a result, surface curvature has a large impact on
the monomer density distribution away from the surface, and tends to reduce
chain stretching for convex surfaces.

At low surface coverage, polymers will have a mushroom like shape due
to surface expulsion, however, at very high surface coverage excluded volume
interactions dominate and chains will be strongly stretched forming a polymeric
brush. A broad crossover region of intermediate surface coverages exists between
these limits and experiments are typically carried out in this regime.

Many theoretical techniques have been applied to the problem of tethered
chains on a planar or curved surfaces. Scaling theories treat polymers as close
packed blobs with a size given by the local correlation length. It is implicitly
assumed that the local polymer concentration throughout the polymer layer is
in the semi-dilute regime. From the blob description, density profiles can be
obtained as well as predictions of the dependence of the width of the tethered
chain layer as function of chain length and surface coverage. Daoud and Cotton
[23] made a model for the profile of star polymers using a blob description, which
was modified by Halperin to describe small finite size cores [24].

Self-consistent field (SCF) methods [25, 26, 27, 28, 29| can be derived from
the statistical physics of chain molecules [30]. From SCF methods the profiles
can be obtained for moderately high surface coverages and weakly interacting
chains. SCF methods break down in the presense of large density fluctuations,
for instance at lower surface coverages. In the limit of extreme stretching lateral
fluctuations are weak and the path of a polymer chain can be mapped onto
a classical mechanical problem of a falling particle in a potential as originally
shown by Semenov [31].

The thermodynamics of polymers layers at flat interfaces has been inves-
tigated by Carignano and Szleifer [10, 32, 33] using a single-chain mean field
theory. This approach includes all the intra-chain interactions within the cho-
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sen chain model, and a mean field approach is used for solvent molecules and
other chains. This approach provides the osmotic pressure profile away from the
surface and pressure-area isotherms.

Tethered polymers at flat and curved interfaces have been investigated by
Molecular Dynamics and Monte Carlo methods [34, 35, 36]. Computer simu-
lations have primarily been used for obtaining density profiles as function of
various parameters. Common for all these approaches, at least as they are cur-
rently applied, are that none of them produce expressions that can be used for
analysing experimental scattering data. However, Monte Carlo and Molecular
Dynamics simulations can easily be modified to sample scattering corresponding
to an ideal scattering experiment with contrast variation.
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Chapter 4

Theory

This chapter introduces the theoretical background for the summary of arti-
cles, and the articles themselves. First basic scattering theory including contrast
variation techniques and the scattering from a solution of different particles are
introduced. The relation between scattering, correlation functions, and ther-
modynamics is derived. Two sections derive expressions for the scattering from
dilute and semi-dilute polymer solutions. The main topic of the thesis is scatter-
ing from aggregates in solution especially micellar aggregates and models of the
micellar scattering, and this is introduced after a section on core-shell models.
The chapter is concluded with a brief remark on the interpretation of scattering
data, and a heuristic introduction to Maximum Entropy methods. For further
information the reader is referred to the literature on scattering theory and
applications to fluids and soft condensed matter, see e.g. [18, 37, 38, 39].

4.1 Basic scattering theory

In a general scattering experiment a beam of incident radiation illuminates a
volume of matter, and the scattered radiation is detected at a certain angle
relative to the transmitted beam. The observed scattering depends on the in-
teraction between the beam and matter within the scattering volume. Typical
beams consist of laser light, X-rays from a synchrotron or conventional source,
or neutrons from a reactor or spallation source.

The incident radiation is represented as a plane wave with a wave vector k;
and the scattered radiation is approximated by a plane wave with wave vector
k,, which is defined by the position of the detector relative to the transmitted
beam. Assuming that the scattering process is elastic i.e. k = |k;| = |kg|, and
that the scattering is weak such that multiple scattering events can be neglected,
it follows from quantum mechanics using the first Born approximation [37, 40]
that the detected intensity is given by the differential cross section

do
o i U ) )

Here U(r) is the interaction potential between radiation and matter. Assum-
ing that the potential is caused by many different scatterers located at positions

15
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rj. Then the potential can be expressed as the sum U(r) = 32, U;(r — r;),
where Uj is the interaction potential between the j'th scatterer and the incident
radiation. This yields a matrix element

(ks|Uk;) ZU e AT

where the scattering vector q is defined as q = k; — k. The momentum transfer
of the scattering process is given by hq. The length of the q vector is directly
related to the angle 20 between the transmitted beam and the scattered beam
measured at the detector position as |q| = 2ksin(f), and the wavelength of the
incident radiation is A = 27 /k. The scattering due to structures with a longer
length scale than the incident radiation is located very close to the transmitted
beam. Accordingly, scattering techniques of measuring structures longer length
scale than the incident radiation are known as small-angle scattering techniques.

Neutrons are scattered from the atom nuclei, and it is a good approximation
to assume that the spatial extension of the potentials is small compared to the
wavelength of the incident radiation, in which case the scatterers can be regarded
as point-like, and the neutron interaction potential can be approximated by a
delta function

o2mh?
m

Uj(r) = bjo(r),

where b; is the scattering length. This potential is also known as the Fermi
pseudo-potential. The scattering length of neutrons has a complicated depen-
dence on the atom number, isotope and spin state, and can even be negative.
The scattering from a number of point-like scatterers becomes

2

x Z bje_iq'rj
j

By defining the scattering length density 7(r), the sum is replaced by an
integral over the scattering volume and the result is

/dr7r qu

The discrete expression can easily be retrieved from the continuum descrip-
tion using a density defined as m(r) = 32, b;6(r —r;).

The observed scattering is the square of the Fourier transform of the scatter-
ing length density distribution. Any periodic structure, such as crystal, will have
a large Fourier component for the corresponding q vector, and this will give rise
to a strong scattering. As a result a very important application for scattering
techniques has been the determination of crystal structures. A crystal can be
rigidly mounted in a scattering experiment, however, if the scatterers are poly-
mers or aggregates suspended in a solvent then many different configurations
of scatterers are possible. Let 7, (r) denote the scattering length density when
the system is in the a’th state, where the state is used to collectively denote




4.1. BASIC SCATTERING THEORY 17

the configuration of molecules or aggregates. (X,(r)), denotes a configurational
average over all the possible states a of the quantity X,. Translational or ori-
entational averages, will be denoted by subscript “t” and “o0”, respectively. Thus
(Xa(r1,r2)) 4y, is the configurational, translational, and orientational average
of the function X, (ry,ry), while a translational and orientational average is
denoted (Xq(r)),,-

For particles, molecules or aggregates suspended in a solvent the configura-
tional, orientational, and translational average of the of the scattering is

do arl?
do —iq-r
30 & <‘/dr7ra(r)e >ato.

For convenience the scattering length density is replaced by 7, (r) = Am,(r)+
Tsolvent Where Am,(r) is the excess scattering length density of the scatterers
relative to that of the solvent mgyent. The excess scattering length density is
given by Amy(r) =Y, Abip(of)(r), where pg)(r) is the number density of the i'th
species of scatterer and Ab; the excess scattering length of that species, where a
scatterer could be an atom, a molecule or an aggregate of molecules. Separating
the contributions due to species and solvent the scattering is

2>
ato

é(q) x <‘2Abz/drp((;) (r)e*’tq-r + ﬂsolvent/dreizq'r
i

Defining the Fourier transform of the density distribution as

pi(a) = [ drpld(x)e 1T,

where integrals are restricted to the scattering volume V', and using the defini-
tion of the delta function the differential scattering cross section becomes

| )

Hence, the scattering due to the solvent will be confined to the forward
direction q = 0, where it is indistinguishable from the transmitted part of the
incident beam, and as a result the §(q) term can be ignored. In the rest of
this chapter the argument of a function is used to distinguish between functions
and their Fourier transforms, such that f(q) denotes the Fourier transform of a
function f(r).

Using neutron scattering techniques it is possible to selectively cancel scat-
tering contributions from certain species by matching the solvent scattering
length density to the scattering length density of that species. Scattering con-
trast can be enhanced by changing the isotope composition of a species, for
instance by substituting hydrogen atoms with deuterium as often done for poly-
mers or biomolecules. This can be used for investigating the structure of an ob-
ject, that consists of different types of scatterers for instance different species of
polymer molecules, such as a star polymer or a micelle consisting of block copoly-
mers [41], a complex biological structure such as a virus [42] or a biomolecule

Z Abipg) (q) + WsolventV(S(q)
[}
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such as a ribosome, which can consist of both RNA, DNA, and proteins. This
is the basis for neutron contrast variation studies [18, 43, 44|, which yield more
information about the structural arrangements of constituent species compared
to what can be obtained by, for instance, X-ray techniques.

4.2 Form and Structure factor

Neglecting the forward scattering contribution due to the solvent the differential
cross section for neutron scattering is given by

2
o .
—o<<‘ZAbipS)(Q)> |
[ ato

If the sample consists of a number M objects suspended in a liquid, such
that they located at R{, in the configuration denoted by «, the scattering length
density distribution is

M
r)=> Gir) (r - RY),

=1

where p()(r) is the density distribution and §; = Ab; [drp(®(r) is the total
excess scattering length of the i’th object, in which case it is easy to derive

do
L < > (1)

<Z B8 ( +2Zﬂlﬂ]pa (q)p )(_q)e—z‘q~(R‘?—R;-‘)>

1>]

2
o) (a)e R

ato

Assuming that the position of an object is not correlated with its orientation,
and that the orientation of different objects is uncorrelated, the average can be
rewritten as

1 M ; i —1q- “_R%
(B (@p (—a)), o Z Bi0) (@))aotB; P (@))ao (e BRI
i=1 M
The form factor of the i'th object is defined as Fj(q) = <pg)(q)p,(f)(—q)>
the form factor amplitude as A;(q) = (p(a) (q))ao, and the center-to-center struc-
ture factor as H;j(q) = <exp[ (R )]> . Using these abbreviations
ato
the scattering function can be stated as
do 1 ¥
0 =3 2 HF@+ 4, Z BiBj Ai(q) Hij(q) A;(a)- (4.2)
i=1 z>]

The form factor describes the scattering from two sites within the same
object, while the second term describes the interference scattering from sites
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belonging to different objects. If the positions of the different objects are un-
correlated as it will be in a very dilute solution, then H;;(q) = 0 and only the
scattering due to the form factor is observed. The second term is a product
of Fourier transforms, and by virtue of the Fourier convolution theorem this
corresponds to a convolution of distributions. Thus the second term can be in-
terpreted in real space as the convolution of three distance distributions: A;(r),
which is the distribution of distances between sites in object 7 and its center,
and H;j;(r) is the distribution of distances between the center of object ¢ and
j, and a distribution of distances between the center and sites within object j.
The generalisation of this interpretation is presented in article TV.

In the special case where only one type of object is present, eq. (4.2) yields

%(Q) = F(q)Sapp(a)

where the apparent structure factor is Sap,(q) = A%(q)H(q)/F(q) + 1. H(q)
is the center-to-center structure factor, i.e. the Fourier transform of center-to-
center distances between different objects. In the special case where the objects
are spherically symmetric F(q) = A?(q) (see section 4.9) and the apparent
structure factor is Sqpp(q) = H(g)+1. The form factor carries information about
distances within a object and thus indirectly interactions within that object,
whereas the structure factor carries information about the distances between
different objects, and thus carries information about object-object interactions.
Using the Ornstein-Zernike relation the structure factor can be calculated for a
known pair-potential between objects given a suitable closure relation [39].

In general the scattering length density depends on the interaction between
the incident radiation and the atoms in the sample volume [18, 43|. Light and
X-ray photons are scattered from electrons, while neutrons, on the other hand,
interact with the atomic nuclei via weak short-ranged nuclear forces. It is also
possible to define scattering length densities in the case of light and X-ray scat-
tering, and the result is that an equation exactly as that of neutron scattering is
obtained, except with different expressions for the scattering lengths. For X-rays
the scattering length b; is the atomic form factor of the i’th atom and depends on
q, while 7(r) is proportional to the electron density distribution in the sample.
The interpretation of the scattering length for light scattering is more complex,
but it is related to the polarizability of the scatterers, and this can be expressed
using the derivative of the index of refraction with respect to concentration.

In order to simplify the notation it will be assumed that only one species of
scatterer is present, in which case a scattering function S(q) can be defined as

Sla) = < [ dxpa(year > , (4.3)

where N is the number of scatterers given by N = [drp,(r). The number of
scatterers is assumed to be fixed and independent of state a. The scattering
function is independent of the type of radiation that is used. The differential
cross section is related to the scattering function by the excess scattering length,
which depends on the type of radiation, as
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do 9

At this level no assumptions have been made about the nature of the scat-
terers. They could be aggregates, polymers molecules, or individual atoms. Nor
has any assumptions been made about the structural arrangements of objects.

4.3 Correlation functions

This section introduces correlation functions of densities corresponding to a sin-
gle species of scatterer, and no assumptions are made regarding the nature of
the scatterers. They could be atoms, molecules, or aggregates. The correlation
functions will be related to the scattering function and later to a general statis-
tical physical property. Results presented in the following sections are correct
even in the absence of orientational and translational averages, and as a result
the these averages are described in a separate section.

Expanding the norm square in the scattering expression eq. (4.3) the scat-
tering function can be rewritten as

NS(q) = </ drpa (ry)e’d™ x /dr2pa(r2)e‘iq'r2> = (pa(@)pa(=a))q
«
here po(q) is the Fourier transform of the number density distribution in the o’th
state. Using the fact that the configurational average and Fourier transformation
are both linear operations and can be interchanged, the scattering function can
be rewritten as

NS(a) = [ dridrs (pa(r)pa(ra)), T

= /drlerC(rl,rg)eiq'(rl_m) =C(q),

where C(r1,12) = (pa(r1)pa(r2)), defines the density-density correlation func-
tion, and C(q) = (pa(q)pa(—a)), its Fourier transform. The scattering function
S(q) is given by the Fourier transformed density-density correlation function
C(q). The correlation function contains information about to what extend the
density at one point ry is “related to” the density at another point rs. In the
absense of interactions, either direct or indirect, between particles at the two po-
sitions, they will be statistically independent. Thus correlations can be regarded
as a measure of the structures imposed by interactions between particles. The
correlation function becomes C(rq,r2) = (pa(ri)), (pg(rg))ﬁ for |[r1 —rg| — o0
as interactions are assumed to be of a short range. This assumption is not correct
for crystalline materials, where there is long ranged order.

The density distribution of the a’th state p,(r) can be expressed in terms of
the configurationally averaged density p(r) = (pg(r)); and a density fluctuation
dpa(r) defined as po(r) = p(r) + dpa(r). Inserting this in the definition of the
correlation function and expanding using (6p5(r))ﬁ = 0 yields
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C(r1,12) = (pa(r1)palr2)),, = p(r1)p(ra) + (0pa(ri)dpa(ra)), -

The density correlation function is the sum of two contributions, one origi-
nating from the product of average densities, and another originating from the
fluctuations of individual configurations about the average density. The den-
sity fluctuation correlation function (also known as the Ursell function) is here
defined as

D(r1,12) = (6palr1)dpa(r2)), = C(ri,ra) — p(r1)p(ra),

for large distances the fluctuation correlation function converges to zero. Insert-
ing the correlation function in the expression for the scattering function yields

NS(q) = /dI‘ldI‘QC(rl’rZ)eiq'(rl—Ib)’

2
= /drp(r)eiq-r + /drler <5pa(r1)5po¢ (r2)>a eiq.(I'1—I'2)’

= p(q)p(—q) + ND(q).

The scattering function has two contributions, one is the configurationally
averaged density distribution |p(q)|?, and another due to density fluctuations

about the average density, this latter contribution is given by

D(q) = % (0pa(a)dpa(—q)), -

The density fluctuation correlations are typically short ranged, and the
Fourier integral can be regarded as an integral over a number of cells with
some characteristic size. The Fourier integral will be proportional to the num-
ber of cells, and the definition of the fluctuation scattering includes an inverse
factor N, such that it is independent of number of scatteres in the large volume
limit, i.e. D(q) becomes an intensive quantity.

4.4 Statistical Physics

In order to understand the physical information contained in the fluctuation cor-
relation function, a relation between correlation functions and statistical physics
has to be established (the following derivation is inspired by [38]). An average
over possible states can be expressed as

_ Za XaeiﬁHa
e Za ae_BHOL b
where H, is the Hamiltonian of system when it is in the «’th state and g =

1/(kyT), where ky is the Boltzmann constant, and T is the absolute temperature.
We are interested in ensemble averages of densities and correlation functions

(Xa)a (4.4)
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between densities, the grand canonical ensemble which depend on the volume
V', temperature T', and an external chemical potential field u(r) is a good choice.
The grand canonical partition function is given by

S(e)] = e (~pHa +5 [ axpa(outr)).

How this sum is evaluated, and how the Hamiltonian and the number density
of a state p, for an actual polymer or polymer aggregate is expressed is outside
the scope of this thesis (see e.g. [45, 46, 47, 48]). Variational calculus [49] can
be used to calculate the response of the grand canonical partition function to
infinitesimal variations of the external chemical potential, which shows it can
be used as a generating function for correlation functions. For example

J 1 4

T InEfu(r)] = BE du(ry)

E[p(r)]

=2 e (Bt 4 [ drpawn()) e [ arnatente)

[11]

op(ry)
Using the definition du(r)/dp(ry) = 6(r — r1) [39, 38| in the integral, the
following result is obtained

ey ol e (=B [ e,

which for u(r) = 0 reduces to

2o Palr1)exp (—BH,)
Za exp (_ﬁHOz)
The linear response of InZE, i.e. the grand potential, to a variation in the

external chemical potential, is the configurational average of the density. The
following relations can be deduced with relative ease in a similar manner

= (pa(ri))q -

J Elp(r = r = po(r
mlnu[ﬂ( )] o = (palr1)), = p(r1), (4.5)
1 5 N R
=Ta(r)] Bop(ey) Boptra) )] - (pa(r1)pa(rs)), = Clr1,12),
and
d ’ InZ[u(r)]] = (dpalri)dpa(ra)), = D(r1,rz) (4.6)
Bou(ry) Béu(re) n=lpr =0 = (0pa(r1)0pa(r2)), = D(r1,12). )

The derivation shows that the average density, the density correlation func-
tion, and the density fluctuation correlation functions can all be regarded as
functionals of the external chemical potentials, which in the y = 0 limit corre-
sponds to the previously defined correlation functions. In particular a compari-
son of eq. (4.5) and eq. (4.6) shows that the following relation is valid
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M = D(I‘l,rg). (47)

Bép(ra)

x(ry,r9) is a generalised susceptibility as it relates response of the average
density at r; to a change in the external chemical potential at ry, and this is
identical to the density fluctuation correlation function. This follows directly
from the definition of the grand canonical partition function, and in general
the linear response of the density of an extensive parameter with respect to its
conjugate field is given by the fluctuation correlations of that extensive density.
This type of relation is known as a fluctuation-dissipation theorem [38, 39, 50].

A connection to the isothermal compressibility follows when Taylor expand-
ing the density in the external chemical potential field as

x(r1,r2)

plr1; p(r)] = plri; p = 0] +/dr2 ﬁp[rl;u(r)] . 05u(r2) + -
wu(r)=

= plrie =01+ [ draD(er,r2)du(rs) 4+

In the special case where the chemical potential is a small constant du(rs) =
O, this becomes

o op

using the definition for D(q) and the mean density p = N/V =V ! [dryp(r)
the equation can be rewritten as

Op(ry) _ plry;op) —p(ri;p=0) ﬁ/drgD(rl,rz) N

dp _ 1 dp(r1) _ B /
oV / ry o v ridraD(r1,r2) = BpD(q )

The response of the average density to a change in a constant external chem-
ical potential is given by the q = 0 limit of the density fluctuation correlation

function. This result can can be related to the isothermal compressibility s,
which is defined as
10V

KT = ——

A
V op

=p
T,N o

.
Here the Gibbs-Duhem relation Vdp = Ndu + SdT and p = N/V was used

to rewrite the expression. The isothermal compressibility can be related to the
Fourier transform of the density fluctuation correlation function as

kr = Bp 'D(q =0).
The osmotic pressure II can be expanded in the density in a virial expansion
PIL = p + Agp® + Aap® + -,

where the virial coefficients As, Az, ... contains information about interactions.
If the particles are non-interacting, e.g. as they are in an ideal gas, then Ay =



24 CHAPTER 4. THEORY

A3z = ... = 0 and the expansion reduces to the ideal gas law. The isothermal
compressibility can be expressed using the virial expansion as follows

ot ~! 1
K = <p—> = % (1+2A2p—|—3A3p2+)

dp
Hence, by obtaining the forward scattering due to density fluctuation corre-
lations, the virial coefficients can be obtained as

Bl =0) =1+249p+343p° +... =1+ 245(p)p. (4.8)

Here the apparent second virial coefficient As(p) = Ag + %Agp + .-+ was
used to absorb all higher order terms. By doing series of scattering experiments
at increasing densities, and extrapolating to obtain the forward scattering, the
virial coefficients can in principle be obtained [51, 52|. In practice multiple scat-
tering sets an upper limit for the densities that can be probed in particular for
light scattering.

The configurational average of a polymer solution is a homogeneous density
distribution, as a result the scattering due to the average density is in the forward
direction, and all the observed scattering will be due to the density fluctuation
correlation function, and as a result the observed scattering can extrapolated to
q = 0 to yield the osmotic compressibility 0I1/dp [51, 20].

4.5 Positional and orientational averages

Objects suspended in a liquid medium are not fixed, and as a result of this
translationally invariance, the correlation function C(ry,re) can only depend
on the relative vector C(ry — r1) = (C(ry,r9));. Nor is there a fixed orienta-
tion, as a result of this rotational invariance the correlation function can only
depend on the length of the relative vector as C(|rg — r1|) = (C(ra —r1))o =
(C(r1,r3))¢. Thus positional and orientational average can be performed by
inserting V='(r — |ry — r1]) in any [dridry - integral, where the factor V=1
is due to the translational invariance. For instance

(C(rl,l‘g))to = V_l /drlerC(rl,rg)é(r — ‘1‘2 — 1‘1‘),

_ vyl /drld(rg — 1) C(rs — 11)8(r — 2 — 11

The integrand is independent of ri, and the r; integral yields a factor of
volume, that is cancelled by the prefactor. Expressing the relative vector ro —ry
in spherical representation yields

_ / d(cos 0) dgr2C(r) = dxr? P(r).

4r2P(r) is the pair-distance distribution between the objects, e.g. it gives
the number of particles in a spherical shell between r and r + dr around any
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object. The scattering function of a fixed radial shell can be derived using the
same procedure as

S(g,r) oc V7! /drldFQC(rl,r2)5(r — |rg — rl‘)e—iq(rz—h)

= /d(cos 0)d¢ r2P(r)e i cost — 471'7“2MP(7").
qr

The scattering is only a function of ¢, and performing the radial integral of
the pair-distance distribution yields the normalised scattering function as

5 fd7’47r7’25i12(—fr)P(r)
(4) = N [drdnr2P(r)

This expression can be used for calculating the scattering from a polymer
chain when an expression for the pair-distance distribution is available.

4.6 Polymer models

Polymers are connected string-like objects, which gives rise to connectivity cor-
relations between different sites on the same chain. Polymers also consist of
monomers, which interact with neighbouring monomers, this interaction gives
rise to rigidity of the polymer back bone, due to the torsional potential of
the bonds and possible steric interactions from side groups on the monomers.
Monomers far from each other along the chain, can be spatially close due to
the conformation of the polymer chain, and this leads to excluded volume in-
teractions. Finally, monomers interact with the solvent molecules, which means
that the preferred polymer conformations show a strong dependence on solvent
quality and temperature [4].

A chain with contour length L from end-to-end or correspondingly n seg-
ments, can be regarded as a polymer conformation given by a vectors R; which
denote the position of a i’th site/segment along the chain. One parameter that
describes a polymer is the mean square site-site distance which is defined as

(m5) = (e -m[')

where the average is over all conformations of the polymer, and R —R?‘ denotes
the separation vector from site j to site 4 when the chain is in the o’th config-
uration. From this expression the Hausdorff dimension dg [53] can be defined
as

1
(R%) oc |i — j|

The “true” Hausdorff dimension is obtained for |i — j| — oc. For chains of
finite length there will be corrections to the Hausdorff dimension. A special case
of the site-to-site distance is the end-to-end distance, which is defined as
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(R%) = (RS - R3”)

Another quantity is the radius of gyration, which is defined by

L& 1 &
<R3>:<E;|R?_Rgm2> where RngE;qu-

[0}

3
[0}

The radius of gyration is the mean square distance from a site on the chain
to the chain center of mass, and it is a measure of the spatial extension of the
chain. The radius of gyration can also be shown to be [54]

(8) = e (3 o)

The most simple model of a polymer is a flexible chain model, i.e. a random
walk. In this model the step length [y of the random walk must be longer than the
length scale over which chain orientation information persists in a real polymer,
and hence the flexible chain model only captures large scale properties of a real
polymer. The model includes effects due to connectivity, however, effects due to
chain-chain and chain-solute interactions are neglected, and thus it corresponds
to the physical case of a polymer in a ©-solvent, where polymer interactions
can approximately be neglected. From basic random walk theory it follows that
the mean square site-to-site distance (R%) = |i — 4|12, where [y is the segment
length. In particular (R2,) = lgL, and from this equation it follows that di = 2.

n
> [Rf - Rj
67

i

[0}

66>

The radius of gyration can be shown to be (Rg) = lpL/6 in the limit of many
segments [54]. From basic random walk theory it can further more be shown
that the pair-distance distribution between sites on a random walk is Gaussian
distribution in the large n limit.

The angle 0 between successive segments is free for the flexible chain model,
fixing this angle introduces semi-flexibility in the chain, hence known as the
semi-flexible chain model, this model also neglects interactions between different
segments. Flory [54]| has shown that the expressions for the average end-to-end
distance and radius of gyration for a flexible chain (in the large n limit) are also
valid for a semi-flexible chain, however, with the segment length replaced by the
Kuhn Length b as

Lb
(R%)=1b and (R2)= -
The Kuhn length b is given by
1 + cos(0)
b= —-"=I.
1 — cos(6)

The Kuhn length is the length scale on which the orientation of subsequent
segments is uncorrelated. e.g. it is the step length of the equivalent flexible chain.
An approximate expression for the pair-distance distribution of a semi-flexible
chain has been derived by Daniels [55, 56].
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The Kratky-Porod chain model is obtained from the semi-flexible chain
model in the limit where ny, — oo, Iy — 0, and 8 — 0 such that the number of
statistical independent segments n, = L/b is fixed, in that case [54, 57, 58]

(R%) = Lb{l - 2%1, (1- 62””)} ,

and

3 3 3 o\ Lb
<R§>:(1—2—m+%—4—@(1—e 2b)>?

These expressions reduce to the semi-flexible chain result in the limit of
large ny. The previous models were analytically tractable, however, including
excluded volume effects for both a flexible and semi-flexible chain model leads
to a model, that is very difficult to handle analytically. The excluded volume
interaction is a very strong and long-ranged interaction for polymers in three
dimensions. There are three approaches which can yield results for chains with
excluded volume: one is simulation techniques such as Molecular Dynamics or
Monte Carlo simulations, see e.g. [59, 60, 61, 62|, another approach is functional
integrals [30], and a third method is renormalization group techniques, see e.g.
[46, 48, 63, 64].

Simulation techniques are limited by the computer time it takes to perform
a simulation, at present, however, it is possible to perform simulations on very
complex chain models. It is also possible to simulate chains confined to pores
[65], or chains tethered to surfaces. The disadvantage of simulation techniques
are that results are obtained for a particular set of parameters, and repeated
simulation runs sweeping the parameter space are necessary before general con-
clusions can be made just like performing a series of experiments.

Functional integrals provide a statistical physical description of polymer
chains. Polymers are represented as a continuous curve R(l), with an energy
functional given by an Edwards Hamiltonian Hg[R(l)] [66]. The chain partition
function can be obtained by integrating over all continuous curves (hence the
name functional integrals) where each curve is weighted by the Boltzmann fac-
tor exp(—Hg[R(l)]/kyT). Functional integrals of both flexible and semi-flexible
chains can be formulated. A functional integral can be reexpressed in terms of a
diffusion equation, and the problem of excluded volume chains can be expressed
as a self-consistent solution of a diffusion equation i.e. a SCF theory [66, 67].

Renormalization group techniques (RGT) attack the problem of excluded
volume by expanding the functional integral in powers of the site-site interaction
parameter. This expansion is divergent in three dimensions, however, in four
dimensions the excluded volume interaction can be regarded as a perturbation.
Heuristically this can be explained by the fact that the Hausdorff dimension of a
excluded volume chain is less than two (it is di =~ 1.7 [68]), two planes (dy = 2)
will almost always cross each other in a four dimensional space, while they will
almost never cross each other in a five dimensional space. Similarly two self-
avoiding chains will rarely overlap if the dimension is four [21]|. The expansion
can furthermore be expanded in € given by the dimensionality d = 4—e¢. Through
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the renormalization procedure singular terms around d = 4 are absorbed in a
series of relations relating microscopic (bare) quantities to effective macroscopic
quantities. Hence the ill-behaved microscopic model is reformulated into a well-
behaved effective model that depends only on macroscopic quantities, and these
can then be evaluated for e = 1 i.e. in three dimensions.

Using a simple mean field argument Flory predicted a simple scaling relation
(R2,) = b*n?” between mean-end-to-end distance and the number of statistical
segments for a flexible chain with excluded volume interactions [21]. Here b is the
Kuhn length, n is the number of segments which is assumed to be large. Flory
also gave an expression for the critical exponent v = 3/(d + 2). This expression
gives the correct value for one and two dimensions. In three dimensions Flory
predicted v = 0.6, while RGT predicts a value of v = 0.588 [63, 68]. For 4
four dimensions or more v = 0.5. RGT also provides an expression for the
pair-distance distribution [60, 64, 69] from which the radius of gyration can be
calculated [70] as

b2n2u
(75) = ST+ o)1+ 20)

Later studies have shown that different exponents exist for end-to-end, end-
to-internal point and internal-to-internal point distributions [60, 64]. The result
for a flexible random walk is retrieved in the limit of v — 0.5. The Hausdorff
or fractal dimension of a chain is given by di = v~!, and this is related to the
volume occupied by a chain in the long chain limit.

4.7 Scattering from a dilute solution of flexible poly-
mers

In a dilute polymer solution we can neglect the correlations between positions,
orientation, and configuration of individual chains, and as a result the scattering
can be calculated from the pair-distance distribution of a single chain (H(q) =
0). For a long flexible polymer without interactions between any sites the pair-
distance distribution is given by a Gaussian distribution as

3 2 3r2
P(r,1)4nr?dr = (m> exp (—m> 4rr?dr.

This results follows from the fact that the problem of a non-interacting
flexible polymer can be mapped onto the problem of a random walker, where
the time in the random walk problem corresponds to contour length for the
polymer. P(r,l) is the distance distribution for two arbitrary sites on the chain
separated by a distance [ along the contour. The scattering contribution from
two fixed sites separated by a fixed contour length [ is sin(gr)/(gr) averaged
over all possible separations r as

* i blg?
U(g,1) = / dr4wr2mP(r,l) = exp (——q> .
0 qr 6
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U(q,l) is a configurational averaged phase factor for fixed contour length.
The full scattering is obtained by averaging the phase factor over all possible
sites ({1 and l2) on the chain as

L dndi L 9(L -1 blg?
Fpebye(q) :/0 U (g, |1y — 2]) :/0 dl%exp <——q>

L? 6

2(e7" —1+1x)
22

3

where the abbreviation z = bLq¢?/6 = (qR4)? was introduced. This result was
first derived by Debye in 1947 [71]. In a similar manner the form factor of
any polymer chain with a given pair-distance distribution can in principle be
derived. Results for the Daniels and des Cloizeaux distributions [55, 60| are
given in article IV and shown in figure 4.1.
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Figure 4.1: Form factors for different pair-distance distributions for R, = 3.11b
and L/b = 38 corresponding to the simulation.

The form factor of flexible chains with and without interactions, semi-flexible
chains without interactions, and simulation results with excluded volume inter-
actions and semi-flexibility are shown in figure 4.1. The Daniels approximation
breaks down around gb ~ 3 values, but the remaining three form factors shows
power law behaviour at high ¢ values. This is caused by the different chain
statistics
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Figure 4.2: Scale dependent Hausdorff dimension corresponding to form factors
shown in figure 4.1.
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where dj (i — j|) is the scale dependent Hausdorff dimension, which can also be
derived from the form factor as as dg(q) = —d(log,o(Fe))/d(log(q)), and this
is shown in figure 4.2. For small ¢b values the chain is probed on very long length
scales compared to the radius of gyration, where chains are point-like objects
with Hausdorff dimension is zero. For large values of gb very short length scales
are probed, the Debye and des Cloizeaux distributions do not include semi-
flexibility, and they converge to the long chain limit of a random walk and a
self-avoiding random walk, which yields Hausdorff dimensions of two (v = 0.5)
and 1.7 (v = 0.588), respectively. The Hausdorff from the simulation has a peak
at the length scales where the random walk nature of the chain is probed, but
the simulations includes effects of semi-flexibility, which leads to d = 1 at large
values of gb. An extended range of powerlaw behaviour is not observed because
of the finite number of segments and few vertices per Kuhn length.
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4.8 Scattering from a semi-dilute solution of flexible
polymers

Assuming that N identical polymers each with n segments/scattering sites is
dissolved in a volume V. Assuming further that Rj; is the position of the j'th
segment on the ¢’th chain when the collective configurations of all the chains is
denoted « (in the following the indices i, range from 1,..., N and j, k from
1,...,n in order to simplify notation). This means that the instantaneous den-
sity distribution of the a’th state is given by

n

-y St

i=1j=1

while the mean density of scattering sites in the volume is p = nN/V. The solu-
tion will be in the semi-dilute regime if 47 R3N/(3V) > 1, where Ry is the radius
of gyration of an unperturbed chain. The semi-dilute regime is characterized by
chain densities so large that there are more than one chain within the volume
occupied by an unperturbed chain.

The scattering function was shown to consist of two contributions due to
the configurationally averaged density and density fluctuation correlations. The
average density is constant, and as a result the scattering from the average
density is proportional to a delta function at q = 0, and it will be neglected.
The scattering function S(q) is the density fluctuation correlation function D(q),
and is given by

q) = ﬁ <‘/ depo(r)e— |

zmﬂRw>$§i<RR%

i 4] Ik

n

R

(0]

which can be written as

S(q) = wlq) + ph(q). (4.9)

We have thus written the total scattering function as the contribution from
intra-chain correlations, and inter-chain correlations. The intra-chain scattering
contribution is defined as

S (e R )

«a

which is simply the Fourier transform of the distance distribution between sites
on the same chain. If chain-chain interactions are weak, for instance for suf-
ficiently low densities within the semi-dilute regime, and if we neglect semi-
flexibility and excluded volume interactions, then w(q) = nN Fpepye(qRg). The



32 CHAPTER 4. THEORY

inter-chain scattering contribution is the Fourier transform of the distance dis-
tribution between sites on different chains

_ VSN[, iR} R}
ha) = ooy 2= 2 (e )

il gk @

Inter-chain correlations are long-ranged on the length scale of the character-
istic inter-chain length scale. This is caused by indirect interactions mediated
by neighbouring polymer chains. As a result an effective inter-chain correlation
function between sites on pairs of polymers can be introduced, which is called
the direct correlation function, and denoted ¢(g), this should not to be confused
by the Fourier transform of the average density distribution C'(q). The direct
correlation function is introduced in an attempt to decompose the correlations
induced by indirect interactions, mediated by the medium consisting by all other
polymers, into an effective pair correlation that includes only direct interactions
between pairs of chains. The direct correlation function is expected to have a
characteristic length scale comparable to the inter-chain distances. In reality
each pair of sites on two chains have a direct correlation function, but an aver-
age is often performed over all sites producing a site-averaged direct correlation
function. This is the equivalent site approximation.

e 000
ORI
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Figure 4.3: Diagrammatic expansion of the PRISM equation in terms of intra-
chain correlations w(q), and direct correlation function c¢(q).

Following this approach, the scattering can be resolved into contributions
from the individual chain w, a contribution from the correlation between two
polymers pwcw. A diagrammatic expansion is shown in figure 4.3, where the
scattering is interpreted as the correlation created by a jump from one site to
another site on the same chain (providing a factor w), a jump from that site
to another site on another chain (pc), and finally a jump to another site on
the other chain (w). Taking higher order terms into account the result is an
expansion of the scattering function as

S(q) = w + pwew + pPwewew + pPwcwewew + - - - (4.10)

This equation can be regarded as the definition of the direct correlation
function. Comparing eq. (4.9) and (4.10) shows that the total inter-molecular
correlation function can be written
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h(q) = wew + pwewew + p*wewcwew + - - = we (w + ph) (4.11)

which is the Polymer Reference Interaction Site Model (PRISM) equation |72,
73, 74, 75]. In PRISM theory an expression for w(q) is assumed, as well as a clo-
sure relation, which relates the direct correlation function ¢(r) to an interaction
potential. From the closure relation the total correlation function h(g) can then
be obtained via the PRISM equation. Solving eq. (4.9) and eq. (4.11) for the
intra-chain correlation function w and the direct correlation function ¢(q) yields

w(q)
S0 = T el

If the direct correlation function is short ranged, the Fourier transform
will essentially be constant, so we can introduce the approximation pr(p) =
—npc(q = 0), where v is the excluded volume parameter. The assumption
that the excluded volume parameter is a function of the density was origi-
nally suggested by Daoud et al. [20] and rigorously shown by Benoit et al. [76].
A normalised intra-correlation function is defined as @W(q) = w(q)/n such that
@(qg = 0) = 1. This has the effect of turning the PRISM expression for the
scattering into the form of an Random Phase Approximation (RPA) [73, 76|

_ ol
@) =niy pv(p)@(q)’
Thus
S0=0) 1+ v(p)p.

The left hand side is the scattering per polymer molecule rather than per
scatterer. The excluded volume parameter v(p), which should not be confused
to the critical length exponent. A comparison of this expression with eq. (4.8)
shows that v(p) = 2A2(p). The excluded volume parameter can be shown to
depend only on the reduced polymer concentration ¢/c* [21, 73].

4.9 Core-shell models

Core-shell models describe the scattering as being caused by a number of concen-
tric shells, see e.g. [70, 77]. Assuming the shells to be of infinitesimal width, the
core-shell model assumes knowledge of the p(s) area density of scatterers on the s
sized shell. The normalised core-shell form factor amplitude (Agpen(q=10) = 1)
is given by

Agen@) = [ dsA(s) Vol s)pls) with p= [T dsA(o)p(s), (112)

where A(s) is the area and W4(q, s) is the phase factor of a s sized shell given
by



34 CHAPTER 4. THEORY

Wo(as) = A) " [ dnolf (e, o)l 9T,

where f(r,s) is a shape-function. The shape function is zero if and only if
the point r is on the shell with size s. The area of the shell A(s) is given by
A(s) = [drd[f(r,s)]. The orientationally averaged form factor and form factor
amplitude of a shell structure is

Fsneu(q) = (Asnen(Q) Ashen(—a)), and  Agpen(q) = (Asnen(a)), -

An example: For the special case of a spherical shell the shape function is
f(r,s) = |r| — s, in this case the phase factor is easy to calculate as

Vinerel0,) = Al) " [ drfje| = sJe 9"

_ L —iqscos __ M
= 47rs2/dqzﬁd(cos9)e = s

Assuming a homogeneous spherical object the radial density is p(s) =1 for
s < r and 0 elsewhere. The radial integral becomes

3 r sin(gs
Asphere(Q) = 47rr3/0 d547r32%

_ 3[sin(gr) — gr cos(qr)] — &(qr).

(qr)?

This result was first obtained by Lord Rayleigh [78]. The form factor ampli-
tude for a homogeneous sphere is the simplest possible core-shell structure and
will denoted ®(gr) in the rest of this thesis. Since the form factor amplitude
only depends on the magnitude of the q vector the form factor of a sphere is
Fyphere(q) = ®2(gr). The form factor will always be the square of the form factor
amplitude for any spherical symmetric distribution.

A core-shell model of a micelle with a spherical core assumes F;ceie(q) =
(Beor Acor (q) -I—ﬂc(,(I)(qu))Z, where the corona form factor amplitude Ao is
given by eq. (4.12) using some assumed corona profile p(r). Hence core-shell
models includes scattering due to an average shell densities (C'(g)), but neglects
the scattering scattering due to density fluctuations (D(q)) caused by chain
connectivity, and chain interactions such as the correlation hole [20] are ne-
glected. The next section demonstrates how some of these effects can be taken
into account.
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Cor ona

Figure 4.4: Tllustration of a micelle consisting of a spherical core and a corona
of dissolved chains.

4.10 Scattering from a micellar aggregate

A micelle consists of a core with some geometrical shape such as spherical,
elliptical or cylindrical, and a corona of dissolved polymer chains. Assuming
that the core is homogeneous then it can be described by a core-shell model
As(q). The normalised (A%, (¢ =0) = 1) corona form factor amplitude is

1 N n aR”
A?or(q) = m Z Z e ik,
i=1k=1

where Rj}, is the location of the k’th vertex on the i’th chain in the corona when
the corona is in the o’th state. N is the number of chains, and n is the number
of scattering sites per chain (in the rest of this section all i and j sums are
over chains, i.e. they range from 1,..., N). The normalised [F;cene(q = 0) = 1]
scattering of a micelle can then be written as

Fmicelle(q) = (ﬁch + 500)72 <|/BchAgor(q) + /BcoAs(q)|2> 3 (413)

ao

where the average is over all configurations (“«”) of the chains in the corona and
orientations (“0”) of the micelle. The two terms describe the corona and core, re-
spectively. ., and ., are the total excess scattering lengths of the whole corona
and core. These can be written 8., = NV Ame, and Bey = NepVeo Ao, where
N, N¢o, Ve, and V,, are the number of chains in the corona and core, respectively,
and the specific volume of a single corona and core chain, respectively. The ex-
cess scattering length densities of a corona chain is Ame, = Teorona,chain — Tsolvent
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and for core chain Am, = Tcore,chain — Tsolvent where T corona,chain ;T core,chains
and Tgopent are the scattering length densities of a single chain in the corona,
of a single chain in the core, and of the solvent, respectively. Assuming that
the core form factor As(q) is real, which is the case if the core has a parity
(R — —R) symmetry, then the micellar scattering can be expressed as

Fmicelle(Q) = (ﬁch + ﬁco)_2 <ﬁzhAgor(q)Agor(_q)

+62,4% (@) + 2BenBeoAs(@)Re (A%, (a)))

ao

These three scattering terms correspond to the corona form factor, the core
form factor, and an corona-core interference scattering, respectively. A nor-
malised corona form factor is defined by

Fuor(a) = (| A% (a) ) (4.14)

The corona-core interference scattering can be defined as
Ses(q) = (As(a)Re (A%, ()4, -

In the special case of a spherical core Sg5(q) = ®(qr)Acor(q) and Acor(q) =

(A%, (d))ao- Using these definitions, the micellar scattering for a spherical core

«o

1S

Fmicelle(Q) = ﬁthcor(Q) + 530‘1)2@7”) + 2ﬂchﬁco(1)(qr)Acor (q)

The physical interpretation of these three terms is that they, respectively,
correspond to the Fourier transform of the pair-distance distribution between
two scattering sites in the corona, two scattering sites in the core, or between two
scattering sites in the core and in the corona. In the special case of a spherical
core, the vector between a site in the corona and a site in the core can be written
as a sum of a vector from the corona site to the core center, and from the core
center to the core site. Due to the rotational symmetry these two vectors will
be statistically independent and independent on orientation. As a result the
pair-distance distribution factorises into the product of a corona-site-to-core-
center (Agor) and center-to-core-site (®) probability distributions, the Fourier
transform of which is S¢5(g).

The corona scattering can separated into contributions using several choices
for the separation. One possibility is to separate the corona scattering in terms
of scattering from the configurationally average density, and scattering from
the density fluctuation about this average. Another approach is to separate the
scattering in terms of inter-chain scattering and of intra-chain scattering as

Fc(q)=<%2A$(q)2> . and

)

H(q) = <m ZA?(q)Ay<—q>> , (1.1

i#] ao
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where the phase sum A{* of the ’th chain when the corona is in the a’th con-
figurational state is defined as

1 & igRe
Af(a) = 3o T
k=1

The corona form factor is the following weighted average

Frorla) = 5 Fla) + T H (o). (4.16)
The physical interpretation of these two terms is as follows: F(q) is the
average single chain form factor, e.g. the Fourier transformed pair-distance dis-
tribution between sites within the same chain. This carries information about
the chain radius of gyration, chain length, chain stiffness, and the number of
statistical independent segments. It also contains information about chain con-
nectivity such as the fractal dimension of the chain. The Fourier transform of
the pair-distance distributions between sites on different chains H(g) contains
information about the radial profile of the corona, but also chain-chain interac-
tions such as the correlation hole, which is present in ordinary three dimensional
polymer solutions [20, 21].

4.11 Interpretation of scattering

Scattering techniques are very sensitive to the structural arrangements of the
scatterers, especially periodic structures. As a result scattering techniques are
ideally suited to probe structural arrangements. However, the basic problem of
scattering tehniques is the inverse problem of how to deduce structure from the
experimental data of the scattering S(q), since phase information is lost in the
measuring process only the pair-distance distribution can be reconstructed, and
from from which structure must be inferred.

Furthermore, the scattering is only known in a certain range of q vectors
due to instrumental limitations. Data are subject to instrumental smearing due
to finite beam collimation (how well defined are directions of kg and k; ), wave-
length spread (how narrow is the energy distribution e.g. |k;| for instance from
a neutron source), and finite detector resolution. Finally there are statistically
errors on the experimental scattering data. All these sources of error make a
direct inversion of S(q) very difficult in general. Only in the special case of a
spherically symmetric arrangement of scatterers is it possible to analytically in-
vert the scattering, as in that case the Fourier transform is a real function, and
no phase information is lost due to the norm square except for an overall sign.

Two types of methods exist for inferring the physical structure producing the
observed scattering; these are model fitting and free-form analysis [19]. In free-
form analysis the pair distance distribution is obtained for example by the in-
direct Fourier transform method introduced by Glatter [79]. The method works
as follows: the pair distance distribution is represented as a linear combina-
tion of cubic splines, typically with some 50 spline functions. The coefficients
are obtained by fitting the Fourier transformed basis functions to the observed
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scattering data. Finally, if the scattering objects are centro-symmetric the radial
excess scattering length density distribution can be obtained from square-root
deconvolution, also introduced by Glatter [80]. Instrumental effect can further-
more be incorporated in the fit. The “free form” name of the method follows
from the fact that the indirect Fourier transform method is independent on any
a-priori assumed model expressions, just like maximum entropy methods.

Model fits using least-squares methods [81, 82, 83, 84] is another way of in-
ferring the structure [85]. A particular model is assumed, for instance a model
describing the scattering expected from a solution of micellar aggregates. The
model will depend on a number of parameters, and the most likely set of param-
eters are obtained from fitting the model scattering to the experimental data.
The goodness-of-fit is typically estimated by the reduced chi-square statistic
X?ned, which is defined as

2
(Ifzp _ Imod(qi; ag,... aM))
5 ;
i

1
Xooglar, ... an) = N—MZ

=1 95

where N is the number of experimental data points I7"", ¢; is a set of fixed
control parameters e.g. detector positions, and o; is the error of the experimen-
tal data, while I™°¢ is the model prediction of the scattering at ¢;. The model
depends on the M parameters «q,...,an. The most likely set of control pa-
rameters assuming the model is true are determined by minimising x?,;. If the
obtained reduced chi-square is close to unity it suggests that the model is a
good description, and that the estimated parameter values are reliable, as the
model curve will on average pass through a 20; sized window about every data
point I7*P. If the reduced chi-square is “large” the model is likely to be a wrong
description of the data, and parameters obtained by the fits are meaningless. If,
on the other hand, the reduced chi-square is less than unity, it suggests that the
error bars are either systematically too large or that the model depends on too
many parameters given the quality of the experimental data.

4.12 Maximum Entropy methods

A good introduction to Bayesian statistics and Maximum entropy (ME) has
been written by Jaynes [86]|, while [87, 88] are reviews of scattering related
applications of ME. The following is a heuristic introduction.

Given an experiment that involves a measurement on a distribution, and
yields as experimental result for the mean @ and variance o2 of the distribution,
which distribution was measured? Clearly the question is ill-posed as no unique
distribution can be specified based on the knowledge of the mean and variance,
however, a unique distribution exists that assumes the least amount of extra
information compared to the information we have. This is the maximum entropy
distribution. From information theory [89] the relative entropy is defined as

H[P.Q) = = Pilogy(Pi/Qi) = —/dxp(x) togs (%) '
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In the context of information theory, this expression has the following in-
terpretation: if a receiver has a prior information given by the frequency @); of
symbols/letters received in earlier messages, and received a new message with
symbol frequencies P;, the relative entropy that the receiver has obtained is
H[P, ()], i.e. this is the number of bits of knowledge the receiver has after re-
ceiving the message. This is almost always different from the number of bits
in the message itself. The relative entropy can be interpreted as the average
of the information or “surprise”, when we observe the ¢’th symbol as given by
—log,(P;/Q;). If P;/Q; is one it means that we are observing a particular sym-
bol with the expected frequency, and this is not a surprise, nor will we receive
any new information. However, if P;/Q); is large a particular symbol is observed
more frequently than expected, and we will be very surprised by its occurrence,
i.e. we have received a lot of new information.

Thus given the experiment which provides prior knowledge of the mean and
variance, and assuming no prior knowledge about the shape of the distribution
e.g. Q(z) = 1, the entropy is given by

H[P] = —/dg:P(g:) log(P(z)) + Ao (1 — (1)

+A1 (a —(z)) + Ao (U - [<x2> - (x)Q]) ,

where (f(z)) = [dzP(x)f(z) is the expectation value of the function f(z). Here
base e is used instead of base 2 in the logarithm, which makes no difference,
as it corresponds to a redefinition of the unit of information from a number of
bits (binary digits) to the number of base e digits. The three \'s are Lagrange
multipliers. The Lagrange multipliers represent the constraints that the distri-
bution should be normalised, and that the mean @ and variance o2 correspond
to the known values. The distribution which maximizes the entropy functional
is given by the equation §H[P]/JP = 0 from which, it is easy to show that the
solution is P(z) = N exp[—(z — a)?/(20?)], i.e. a Gaussian distribution.
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Chapter 5

Monte Carlo Simulation

Computer simulation techniques can be graded on a scale from purely stochastic
to purely deterministic algorithms. Deterministic algorithms, such as Molecu-
lar Dynamics (MD) simulate the trajectory of a system in phase space. This is
done by solving the equations of motion numerically. MD simulations can be
performed on non-equilibrium systems and simulate transport properties. It is
possible to obtain time averages of all the properties of interests from a MD
simulation. Assuming that the sampling of the system is ergodic, then ensemble
averages are obtained. Typically MD simulations are done within the micro-
canonical ensemble, but simulation of other ensembles are possible by modifying
the MD algorithm. MD methods are limited by the small time steps required
to perform an accurate numerical integration of the equations of motion, and
objects with rigid constraints are computationally difficult to simulate.

At the other end of simulation techniques are stochastic algorithms, which
are based on the application of (pseudo) random numbers. A Monte Carlo (MC)
simulation allows canonical ensemble averages to be obtained for interesting
properties. Whereas MD simulates the evolution of a system through the equa-
tions of motion, a MC simulation defines a purely fictitious dynamic, where
each state of the system has a number of possible “neighbour states”. The MC
simulation is performed by allowing the active state to perform a random walk
from neighbour to neighbour state. A neighbouring state to the active state
is chosen randomly for each iteration of the MC algorithm. The energy of the
neighbour state is calculated, and compared to the active state. The step to the
neighbour state is accepted if the neighbour state has a lower energy, however,
if the energy of the neighbour state is higher than the active state it is accepted
with a probability exp[—AE/(kyT)], where AE > 0 is the energy difference
between the two states, ky and T are the Boltzmann constant and the absolute
temperature. The acceptance criterion is known as the Metropolis criterion [90].
The MC algorithm will perform a random walk, that visits a state w with a
frequency proportional to the Boltzmann probability associated with that state
exp[—FE[w]/(kyT)]. This is known as importance sampling, and requires only
that the energy of an state can be calculated.

The choice of possible neighbour states of a particular state is to some extent
arbitrary, however, the choice has to ensure an ergodic sampling of all configu-

41
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rations, which is to say that any two states have to be connected by a number
of neighbour steps. The choice also has to ensure an asymptotic convergence
towards an unique equilibrium ensemble of states, and this requires a balance,
such that the transitions into any state exactly equals the transitions out of
that state, such that no state acts as an absorber. Detailed balance, i.e. the
probability of choosing neighbour state B from an active state A must equal the
probability of choosing neighbour state A from an active state B, is a sufficient
requirement to ensure asymptotic convergence.

The choice of neighbour states do not have any physical meaning, but a
clever design of neighbouring steps, for instance by taking rigid constraints into
account when designing the neighbour class, allows the MC algorithm to roam
the configuration space in relative few iterations, which makes a good sampling
possible with a limited number of steps.

5.1 Overview of Simulations

We have performed MC simulations on a single diblock copolymer micelle, with
the purpose of sampling the form factor as a function of a the number of tethered
chains, the length of chains, and the radius of the core. The micelle was mod-
elled as a core with a number of semi-flexible chains tethered to the core surface.
Spherical cores and cylindrical cores with hemispherical end caps have been sim-
ulated. Chains were excluded from the core region, and chains interacted through
excluded volume interactions implemented by placing hard spheres along the
chains.

Because hard sphere interactions was used the energy of a particular state
is either zero or infinite depending on whether chains overlap or not, as a result,
the energy is independent of the temperature, which corresponds to the idealised
case of an athermal solvent. To ensure ergodic sampling of the micellar corona,
three MC moves were used; pivoting moves were used to modify individual
chain configurations, while two surface moves were used to reorientate the chain
and move it on the core surface. During the simulation a number of physical
quantities was sampled such as the scattering contributions corresponding to
the inter-chain scattering F', the inter-chain scattering H, and the corona form
factor amplitude A.,r. We also sampled the single chain radius of gyration,
the mean chain center-of-mass distance from the core, and the radial monomer
profile.

5.2 Models of Chains Molecules

Polymers are string-like molecules consisting of many identical monomers bound
by covalent bonds. The bonds between individual monomers have a certain
torsional potentials, and the monomers can have side groups, which gives rise
to local steric hindrance for rotations. These local interactions gives rise to a
certain stiffness on length scales comparable to the monomer length scale [54].
We model a polymer chain by n + 1 vertices linked by n segments of length [g.
The angle between subsequent segments is fixed at a constant value 6, while the
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dihedral angle w; can take any value in the interval [—7; x| for any segment,
where w; = 0 corresponds to a trans-configuration. This semi-flexible model
provides a good meso-scopic description of polymers using an effective segment
length and angle [91, 92].

Figure 5.1: Ilustration of a semi-flexible chain in trans-configuration, the tail of
the chain has been pivoted 180° about the i’th segment.

A valence angle of § = 44.4153° was chosen, such that the Kuhn length
b = 6lp. In the long chain limit the radius of gyration of a flexible chain and
semi-flexible chain coincide. The freely rotation chain model can be regarded as
a discrete version of the continuous Kratky-Porod chain model, which is reached
in the limit L — oo, lp — 0, # — 0 for fixed L/b.

Excluded volume interactions was simulated by placing hard spheres with
radius € at each vertex. The radius was chosen such that e/b = 0.1, which is
known to reproduce the binary cluster integral of polystyrene in a good solvent
[93].

5.3 Creating a chain

Defining the i’th segment vector by r; = P;y; — P; where P; is the position
of the 7’th vertex. We assume that the foot vertex P; is given, along with the
direction ry. To define a coordinate system, we need two vectors. We choose a
random vector R not parallel to r; is chosen. Then a vector orthogonal to ry is

constructed by
R r
=R - :
" (|R|r1|) B

A fictitious zeroth segment vector can constructed using the orthogonal vec-
tor by

rg = —lg cos L + 1 sin L. (5.1)

1] Ty
The zeroth and first segment vectors define a coordinate system from which
all subsequent segments can be added, and the fictitious zeroth segment makes
it possible to uniquely define the dihedral angle of the first segment. In general
given the ¢+ — 2 and ¢ — 1 segments the 7'th segment can be constructed with
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a specified segment length [y, segment angle 6, and dihedral angle w;_1 of the
previous segment as follows: Define two auxiliary vectors

ng=r;_oxr,_; and no=r;,_1 X ny.

n; is orthogonal to the plane spanned by the two segment vectors, while
ny lies within the plane, and points in the direction of a trans configuration.
The three vectors {r;_1,n1,ns} defines an orthogonal coordinate system. In this
coordinate system the i’th segment can be constructed such that the previous
segment has a torsion angle w;_1 by

ri—1

r; = —lgcosf + Iy sin 6 (cos(o.;il)ﬂ + sin(wil)i) . (5.2)

;1] g |

Here the dihedral angle is zero in the trans state, and the sign of the dihedral
angle is defined in a right handed manner. Any chain configuration is completely
specified by the knowledge of rg, ry, the fixed segment length and angle, and
a table of dihedral angles w; for ¢ € {1,...,n — 1}, while the chain position in
space is given by the knowledge of any vertex for instance the foot vertex Py,
which is fixed on the micelle surface.

This representation in terms of generalised coordinates suggests that an MD
simulation based on propagating the system using the Euler-Lagrange equation
[94] would be more effective than using Newtons second law and enforcing the
constraints through a rattle or shake algorithm [95]. A hybrid MD/MC algo-
rithm has been proposed that uses a generalised coordinates representation of a
chain[96]. We have used a simple coordinate representation of all vertices as this
facilitates the overlap check between different chains, and it is a natural choice
when sampling the micellar scattering.

5.4 Creating a micelle

A micelle consists of a core and a number of tethered chains. The tethered chains
are excluded from the core and are not allowed to overlap. Chains are grown
simultaneously rather than by adding a single chain at a time. First all chain
roots (Pg, Py, Py) are generated until all chains have a root. During this phase
the P; and Ps vertices are checked for overlap with other roots, and the second
vertex Pg is checked for overlap with the core. If an overlap is detected the root
is relocated. No checks are made for the zeroth segment as this is not a physical
segment.

Chain construction starts when all roots have been placed and does not
overlap. Chains are grown by adding a segment to the shortest chain until all
chains have the required number of segments. Everytime a segment is added the
end vertex is checked for overlap with all other chains. If an overlap is detected,
the last 20 segments are removed. If this includes the root, then the root is re-
located. During chain creation the dihedral angle is restricted to [-60°;60°] as
this stretches the chains somewhat, and thus reduces the crowding at the sur-
face. Chains are flexible enough, that they can be regrown around other chains
after an overlap. While this procedure ensures that the initial micelle does not
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overlap, it produces a strongly biased initial configuration. The configuration is
equilibrated by performing MC steps until on average 200 moves per degree of
freedom have been accepted. The equilibration was monitored by sampling the
acceptance rate, which decays rapidly and stabilises when the corona reaches
equilibrium. The equilibration was also monitored by sampling the radius of gy-
ration and average chain center-of-mass distance from the core. These quantities
are also seen to stabilise at the equilibrium values before the actual sampling
starts. During the equilibration phase the acceptance and rejection frequency
of the three MC moves was monitored, and the excursion of the moves was
adjusted to obtain approximately 50% acceptance rate for the three moves.

The probability of choosing a move was chosen to be proportional to the
number of degrees of freedom that is changed by an accepted move, and the
number of degrees of freedom of the micellar corona. Thus an accepted surface
move will modify two degrees of freedom, either two surface coordinates or
two orientation angles. The pivot move (see next section) changes one degree
of freedom, a single dihedral angle. The probabilities for the different types of
moves was chosen as P(Surface rotation) = P(Surface translation) o< 2N
and P(Pivot) = (n — 1)N where n is the number of segments, and N is the
number of chains in the corona.

5.5 Pivot move

Numerous moves have previously been proposed for sampling the configuration
space of an isolated chain both on a lattice and off-lattice. Some examples are
reptation moves, concerted rotation moves, and biased moves such as chain
removal and regrowth of the Rosenbluth type [97, 98, 99]. However, pivots moves
used in the present work allows the semi-flexibility of the chains to be taken
directly into account.

Pivot moves was originally introduced for chains on a lattice [100, 101]. A
random site on the chain was chosen and the shortest half of the chain was
transformed with an element from of the lattice symmetry group. This leads
to a very large configurational change, however, the probability for overlap is
considerable, and as a result many attempted moves are rejected, on the other
hand when a move is accepted, it has a major effect on the chain configuration.
Madras and Sokal have shown that the pivot algorithm is ergodic, and that it
is the most effective move known for sampling self-avoiding random walks on a
lattice [61, 101].

The idea of the lattice pivot move can easily be generalised to off-lattice
semi-flexible chains [102]. For a chain in a micellar corona, a pivot move is
performed by pivoting the tail of a chain around randomly chosen segment, as
only the tail can be rotated due to the fact that the head of the chain is always
tethered to the core surface. The result is that while only a single dihedral angle
is changed, the chain configuration is very different, and after a few percent of
the segments have been pivoted an essentially new configuration is reached.

Pivoting the chain about a segment ¢ with an angle ¢ is done by transforming
all vertices P; for j € {i 4+ 2,...,n} according to
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P = Q(¢, Piy1 — P;)(P; — P;) + Py

The transformation matrix that performs a rotation ¢ around a direction
given by the i’th segment is given by Q(¢,r) = U(r) "' R, (¢)U(r), where R, (¢)
is a rotation matrix about the z axis, and U(r) is the matrix of directional
cosines, that relates the coordinate system with the x axis along the 7’th segment
to the lab frame. The directional cosines are given by

r r
ayl = 7 €x Q12 =
r| |

r
— ey, (5.3)
x|

where ez, ey, and e, are the unit vectors defining the z,y and z axis in the
laboratory frame. The Matrix @) can be written [102]

ey and a3 =
r|

Q=25+A, (5.4)
where the symmetric term is (denoting v = cos ¢)
afy + (1 —afy)y  anan(l —7) arraiz(l —7)

S = annaz(1—7) afy+ (1 —aly)y apas(l—7) ; (5.5)

ajraiz(l —-) a12a13(1 —7)  aiy+ (1 —als)y

and the antisymmetric term (denoting § = sin ¢)

0 013(5 —012(5
A= —a13(5 0 a116 . (5.6)
012(5 —011(5 0

In a polar representation of the chain the rotation is equivalent to w; = w;+¢.

5.6 Surface moves

Two moves are required to move a chain, one reorientates the chain and another
moves the chain foot point on the surface of core. The chain can be regarded as
a rigid object where the zeroth segment is transformed as the rest of the chain.
This ensures that the torsional angle of the first segment stays constant during
surface moves. The reorientation move is made by pivoting the chain an random
angle ¢ about the foot vertex around a random direction r as

P =Q(¢,r)(P;j —P1) + Py for j€{0,...,n}

For the special case of a spherical core the surface moves can be performed
without the need for introducing a surface coordinate system. The surface move
is performed by pivoting the entire chain about the core center around a random
direction. Assuming that the center of the core is located at the origin, this move
is given by
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1w = (g, 1)P;.

However, general moves on a non-spherical core surfaces requires the intro-
duction of a surface coordinate system and knowledge of the Jacobian, as moves
are required to produce an uniform sampling of the micellar core surface.

For a class of core geometries the surface move can be vastly simplified
by noting that the mapping from core surface onto the inscribed cylinder is
area preserving. This is true for spherical cores and hemispherical end-capped
cylinders. Thus a surface move can be regarded as a projection onto the inscribed
cylinder, a move on the inscribed cylinder surface, and a projection back on the
core surface. This defines a chain translation that moves the foot point to another
position on the core surface. The problem of performing a surface move, that
performs an uniform sampling of a complex surface, has then been reduced to
the simple problem of making an uniform sampling from a cylinder surface.

A move on a cylinder surface can be composed of a rotation around the axis
of the cylinder, and a step along the axis cylinder. If the step ends up above or
below the cylinder it can be reflected back on the opposite side of the cylinder.
The projection of such a move corresponds to a move that translates a chain to
the opposite side of the north or south pole on the core surface.

5.7 Overlap

After a MC move the configuration must be checked for overlap. Three different
types of overlap can occur; chain overlap with itself, chain overlap with another
chain, and chain overlap with the core. Core overlap of a vertex (z,y, z) for a
general rotationally summetric core shape can be checked by z? + 32 < R?(z)
where R(z) a the core cross section at height z, which for a sphere is

Rphere(z) =/ R2, — 2.

Chain-chain overlap is done using the “zippering” algorithm [103]. Consider
a situation where one vertex on one chain is being checked for overlap against
any vertex on another chain. If the direct distance between the two vertices is
d, and if the maximum direct distance between two vertices at the ends of an
n segment long segment is D(n), then the next vertex that has a possibility for
overlap is located max{n > 0/d — D(n) — 2¢ > 0} segments along the chain,
where the direct end-to-end length of n chain segments is given by

locos(%)n  semi-flexible
D(n) = 2
(n) { lon flexible
A naive algorithm for checking for overlaps within the same chain requires
O(n?) checks, but the Zippering algorithm requires only about n!-? [103], which
vastly reduces the number of distance comparisons necessary to check a number
of chains for overlap. When checking for overlap between two vertices on the
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same chain, a certain number of neighbour vertices are excluded from the com-
parison, to avoid introducing rigidity. When the hard-sphere radius € is larger
than the segment length, a number of neighbouring vertices will always be within
the hard sphere, and the volume available to vertices just outside an excluded
volume sphere is limited. The number of neighbours segments is chosen to allow
the chain to perform a 180° degree turn with radius € [91].

5.8 Sampling scattering

The scattering contributions could be sampled by sampling the configurationally
averaged pair-distance distribution 4w R;P(Ry,) for the k’'th bin at radius Ry.
Then calculating the scattering as

in(qRy)
F(o)~S AR 47rR27sm(q k
(9) Ek Tl — B

P(Rk)a

where ARy is the width of the £’th bin. However, this is not a very effective
method, as it requires O(N?) operations per sample, where N is the number of
chain vertices. A better option would be to sample the configurational average
of the scattering given by F(q) = <Zi’j sin(qmj)/(qrij)> for all the distances

r;; between vertices 4 and j. This procedure requires O(N2M) operations per
sample, where M is the number of ¢ values that are sampled. The scattering
can also be obtained as

N . 2
Flg) = < S e A >
J

here both an orientational and configurational average are to be performed. And
the orientational average has to be performed “by hand” i.e. by sampling the
scattering along D different q directions. This requires O(NDM) evaluations
of a complex exponential function. The major difficult is how to evaluate the
exponentials efficiently.

Frenkel et al. [104] have suggested to use q,, = (QTM, 2k, %Tm) where L
is the longest length scale that is interesting. As all q vectors are located on a
cubic lattice, the exponentials can be calculated using Fast Fourier Transforms
(FFT), which is a very efficient method for calculating exponentials on the form
exp(ian) by exploiting recursive relations between different integers n. However,
by virtue of the lattice the number of ¢ vectors required by the FFT technique to
sample scattering from ¢min t0 ¢maz 1S D = Gmaz/@min- This shows that if four
decades of ¢ values are to be sampled 10* FFT samples have to be performed,
and most of these will be at high ¢ values.

Inspired by the FFT technique, we have chosen a hybrid approach to calcu-
lating a few of the complex exponentials directly, and using symmetry properties
to derive the rest. The goal is to locate g, n € {1,..., M} values approximately
equidistant on a logarithmic scale between ¢, and gmas-

The ideal distribution is

«o

@ = 1018 @maz =108 dmin) 77 +108 Gmin (5.7)
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By tweaking the choice of ¢, values slightly we can optimise the evaluation
of the scattering contribution from the j’th vertex to the g,’th scattering value
along the ¢, direction. Our goal is to evaluate

—q [0 —7.
e AT = 71 where y=q, T,

for all M values of g, for all vertices, and for D different directions q, to obtain
the orientational average.

In the following we will concentrate on calculating the complex value of
exp (—i7yqp) in the case where exp(—iyqy,) has already been calculated for all
m < n. If g, exists such that ¢, = 2¢, then exp(—iyg,) = exp(—ivgm)>
(the double angle formula). Since we have previously evaluated exp(—ivgn),
we only need to square that number. If g,,q, exists such that ¢, = ¢n +
¢p then exp(—iag,) = exp(—iyqgm)exp(—iygy) (the addition formula). Since
both exponentials have previously been evaluated, we only need to calculate the
product of two known complex numbers. Thus by an advantageous choice of the
gn values, we can use symmetry properties of the exponentials to convert them
into simple products of known complex numbers. The higher order symmetry
properties require more algebraic operations, and do not provide a significant

optimisation.
The actual distribution of ¢,’s are chosen as to minimise
M 2 Y (g~ q))°
Elq,....qu| = k( ) 2t (5.8
| ] In(10) (10g gmaz — 108 gmin) ) = (47)? (58)
+/3Ncalc + 7Nadd + 5Ndoublea (59)

where Negie,Ngdd, and Ngoypie 18 the number of exponentials that require direct
evaluation, or can be deduced using the addition formulae, or formulae for the
double angle, respectively. Thus M = Ncgc + Nadd + Ndousie- The weights 3, v,
and ¢ are chosen to represent the duration of the respective numerical operation,
and we have used 6 = 1 and v = § = 0.1. The first term is a harmonic term,
that determines how large deviations from a perfect logarithmic distribution
should be allowed in order to speed up the evaluation. Since the distribution
is on a logarithmic scale, we have to divide by the local length scale, which is
given by the parenthesis and the denominator. The constant & should be chosen
so small that the ordering ¢, < ¢, when m < n is ensured. We have used
k = 0.01. This penalty functional is easily minimised by a simulated annealing
quench with moves that shift g,’s, which require trigonometric evaluations into
gn’s, that can be evaluated by simple algebraic operations on known numbers.
If M is huge, care must be taken to avoid truncation errors in the evaluation.
In our implementation only about 10% of the complex exponentials need to be
evaluated directly.

5.9 Correction of positions

The repeated application of pivoting moves introduce numerical errors in the
vertex positions, and as a result chains are periodically reconstructed using
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the chain construction algorithm based on tabulated dihedral angles, which are
updated after each accepted pivot move. The entire chain is also translated so the
foot vertex is on the core surface, this avoids diffusive behaviour of chains away
from the code surface due to truncation errors due to the repeated application of
surface moves. The constructive chain correction algorithm is far more efficient
than the iterative correction algorithm of Stellman and Gans[102]. While chain
construction requires few evaluations per segment, the correction algorithm of
Stellman and Gans requires the solution of a possible singular or ill-conditioned
3x3 matrix equation per segment.

After all the chains on a micelle have been corrected, the micellar corona is
checked for any correction induced overlaps, and equilibrated until these have
reached a state without overlap. However, this is very unlikely and has never
been observed in practice. The maximal deviations of segment length, valence
angle, and dihedral angle were monitored during the simulations, and found to
be below 10712,

5.10 A practical remark

The simulator has been implemented in C++ [105]. C-++ supports the Object
Oriented Programming paradigm, which emphases code reuse, and the isolation
of functionality in different modules with well defined interfaces. The simulator
was implemented using a number of objects that provides different types of
functionality.

Four objects was required for the micelle simulator. An object represented
a single chain, and functionality such as pivot moves and chain corrections,
another object represented the core, and implemented functionality for the core
geometry, checking for core overlap, and foot vertex generation. A micelle object
inherited the properties of an array of chain objects and a core object, and a MC
object inherits all the properties of a micelle, and adds functions for sampling
data and the basic MC algorithm.

The Monte Carlo algorithm only needs to know about the energy of configu-
ration and when to sample and save data. A micelle consists of a core and some
chains. But the micelle object does not need to know the core geometry nor how
chains configurations are represented. However, the micelle object has to supply
a neighbour move and a function that can calculate the energy to the Monte
Carlo algorithm, and supply some way of creating a micelle. The chain object
contains information about the chain configuration, the pivoting algorithm, and
chain correction. The core object contains information about the core geometry,
and routines for performing surface moves, creating foot vertices, and checking
for vertex core overlaps. Thus when the Monte Carlo algorithm wants to select
a new neighbour state, it calls a neighbour function supplied by the micelle ob-
ject, this function selects if it should be a chain pivot move or a surface move.
Pivots moves are performed by selecting an angle and a chain, and calling the
pivot function supplied by that chain object. Surface moves are performed by
randomly selecting a chain and calling a function in the core object that supplies
a vector. This vector translates the foot vertex of the chain to another point on
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the core surface, and the actual translation is performed by a function in the
chain object.

Strict adherence to an object oriented approach allows a clean separation
of functionality into different objects. This has an enormous advantage. If, for
instance, a new core geometry has to be implemented, only the core object needs
to be modified. If the micelle corona consists of chains of different length only
the micelle object needs to be modified. Object Oriented Programming makes
it very easy to modify the simulation code.

5.11 Possible improvements

5.11.1 Overlap checks

The overlap check use the zippering algorithm when testing for overlap be-
tween two different chains say chain A and B. Currently, this is implemented
by comparing all vertices on chain A by zippering along the vertices of chain
B. However, as the positions of each vertex, that is checked during the over-
lap check, is known, it is possible for a vertex on chain A and pair of vertices
on chain B to calculate the closest possible separation between the intervening
chain segment and the vertex on chain A. And the minimal separation distance
between any site on chain B can be used as the contour length of the step along
chain A. This double zippering algorithm would probably lead to a significant
increase of efficiency of the overlap check for many chain systems especially for
long chains.

5.11.2 Reptation

The pivoting algorithm would have a low acceptance rate for coronas with very
large surface coverages, if the maximum excursion of the pivot angle was not
dynamically adjusted during the equilibration phase to yield a 50% acceptance
rate, the reason being that a small rotation about a segment close to the core
can yield a very large excursion at the end of the chain. Reptation moves works
by cutting the head off a chain and gluing it to the tail of the chain, that
way chains can “reptate” through the voids between other chains. Reptation
moves are very efficient for sampling configurations in polymer solutions at high
concentrations. A naive reptation move in a micellar corona could be performed
by cutting the head/tail of a chain, gluing it to the tail/head, and translating
the new chain head such that it touched the micellar surface. Since the head
environment is different from the tail environment the criterion of microscopic
reversibility will not be fulfilled as head to tail moves will be accepted with a
larger probability than tail to head moves. However, by cutting the tail of one
chain and the head of another chain, and cross transplanting the head to the tail
of the other chain, and tail to the head of the first chain, and then translating
the two chains such that they are still tethered to the chain a reptation move
is made that is probably microscopic reversible as the operation is completely
head/tail symmetric. However, it remains to be seen whether such a move can
be formulated for semi-flexible chains.
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Chapter 6

Summary of articles

Small-angle scattering is an ideal technique for obtaining information about
macro-molecular structures such as block copolymer micelles, however, expres-
sions for form factors and structure factors are required for a reliable interpre-
tation of the scattering data obtained from scattering experiments. The topic of
the first three articles is the formulation of an expression for the form factor of
a micelle with a spherical core. The main difficulty is howto include the effects
of excluded volume interactions on the corona form factor. The fourth paper
introduces a general formalism for the form and structure factors of general
polymer structures, such as star polymers with arms of block copolymers, and
micelles with arbitrary core geometries. In the formalism it is assumed that the
different subunits do not interact with each other, however, a method of how to
include excluded volume effects at the level of a linear polymer is presented.

A diblock copolymer micelle consists of a dense core surrounded by the
dissolved chains forming a diffuse corona. The structure of the micellar corona
depends on the contour length of the tethered chains L, the number of chains
N, and on the core radius R,,. From these three quantities three dimensionless
numbers can be derived that quantify the structure of the micellar corona: IV
the number of chains, n = Ry/R,, the effect of surface curvature on the corona
structure, and o the reduced surface coverage. The reduced surface coverage is
defined as 0 = N7wR2,/[4n(Reo + Ryo)?], here Ry, is the unperturbed radius
of gyration, as opposed to R4, which is the actual radius of gyration. In the
expression it was assumed that the center-of-mass of a chain is displaced by
approximately a distance Ry, from the core surface. As a result, the effective
core area is 47 (R, + RgO)Q, and the cross sectional area of the chains is WR;O )

The quantity o is expected to be the corona analog of the reduced con-
centration ¢/c* = 47rR20pm/3, where p,, is the number density of polymers.
For a polymer solution ¢/c* < 1 signifies a dilute solution. In which polymers
behave as a gas of hard spheres with radius R,. The configuration of chains
depend only on the chain entropy, which favours random-walk configurations,
and interactions within the same chain. Entanglement between different poly-
mers are energetically unfavourable as it reduces the configurational degrees of
freedom, i.e. the entropy. For ¢/c* > 1 (and still not a melt) the solution is
in the semi-dilute regime, which is particular to chain molecules and is charac-
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terised by the entanglement of chains. Thus a semi-dilute solution of polymers
consists of a transient network of intermeshed chains. The characteristic size of
a dilute solution, the radius of gyration, is replaced by the correlation length
¢. In a semi-dilute network a single chain can interact with many neighbour-
ing chains, and the correlation length is the length scale on which connectivity
information persists [21]. On length scales smaller than the correlation length
interactions are predominantly excluded volume interactions between sites on
the same chain, and above the correlation length no information about chain
connectivity persists.

The corona of a micelle consists of polymers, but these are tethered by one
end to the micellar core, and if the micellar core is crystalline or glassy the
tethering points will be fixed on the core surface. For ¢ <« 1 chains in the
corona are far from each other, and interactions between different chains are
rare. As a result excluded volume interactions between sites on the same chain
and core expulsion influence the configuration, and the corona will be in the
mushroom regime. This is similar to the situation of a dilute polymer solution
where ¢/¢* < 1. For 0 > 1 the chains form a polymeric brush where chains are
strongly stretched away from the surface, i.e. the corona will be in the brush
regime. No analogy exists for an ordinary polymer solution, as the ordering is
induced by the presence of a surface. A broad crossover exists between dilute
and semi-dilute solute behaviour, and a similar broad crossover exists between
the mushroom and brush regimes.

It was shown in the theory chapter that the normalised scattering [Fp;cene (¢ =
0) = 1] for a micelle with a spherical core is given by

Fmicelle(Q) = (/Bch + ﬁco)_2 (/thFcor + ﬁzo¢'2 + 2ﬁchﬂcoAcor¢') . (6.1)

F.or(q) is the corona form factor, ®2(q) the core form factor, Agr(q)®(q) is a
corona-core interference function, and B., and (., is the total excess scattering
lengths of the corona and core, respectively. As the core is assumed to be spher-
ical and homogeneous the form factor amplitude is ®(qRc,) = 3[sin(qR¢o) —
qRcoc0s(qRe0)]/(qReo)?® [78]. The core form factor contains information about
the core radius, however, this information is also present in the corona form fac-
tor amplitude A.(¢), and as a result the three first papers focus on the corona
form factor and form factor amplitude.

In the theory section it was shown that the correlations of a polymer solution
can be separated into intra-chain correlations and inter-chain correlations. An
analogous separation can be performed on the corona form factor, and as shown
in the theory section, this yields the corona form factor expressed through the
intra-chain scattering F,. and inter-chain scattering H weighted as

N -1

1
Fcor(q) = NFC + TH (62)

The characteristic length scale of intra-chain correlations is comparable to
the radius of gyration, which is typically smaller than the inter-chain correla-
tions. The characteristic length scale of inter-chain correlations is comparable
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with the radius of the core. Typically the intra-chain scattering contribution
will dominate at large g values, while the inter chain scattering contribution
will dominate at low ¢ values, due to the different characteristic scales of the
correlations.

The corona form factor can also be separated into the contributions from
configurationally averaged density and from density fluctuation correlations.
The scattering contribution due to the average density is the corona form factor
amplitude Ao (q) = [5° dr47rr23mq(—fr)p(r), where p(r) denotes the radial profile
of the corona. The scattering contribution due to density fluctuation correlations
is denoted Fyyyc(q). Using this separation, the scattering corona scattering can

be expressed as

1 N—Fl q= 0
Fsol.prof(q) = NFfluc‘l‘ f‘;\L]C( )Azor'

Here the first term is denoted fluctuation scattering, while the second is de-
noted profile scattering as it only depends on the radial profile. The peculiar
weighting between the two terms is due to the fact that the fluctuation scat-
tering is not normalised in the forward direction. Provided an exact expression
for the scattering due to density fluctuations Fsoprof(q) = Feor(q). However, at
present no analytical expression is available for the fluctuation scattering contri-
bution in the case of micellar corona, and as a result it has been approximated
by an RPA expression Fy,.(q) = F.(q)/[1 + vF.(q)], which describe the fluctu-
ation scattering of a dilute/semi-dilute polymer solution. The excluded volume
parameter v is related to the apparent second virial coefficient of the solution as
v = 2A5(0)o. The expression Fyo prof(q) has the interpretation of the scatter-
ing one would expect from a dilute/semi-dilute polymer solution with a radial
monomer profile p(r), and it is denoted solution profile scattering.

The fluctuation scattering will dominate the scattering at large ¢ values,
as density fluctuations correlations are expected to be short ranged, while the
profile scattering will dominate at small ¢ values. All the contributions to the
corona scattering are shown in figure 6.1. The profile scattering (o< A2,,), and the
inter-chain scattering H(q) dominates at small ¢ values, but they are rapidly
decaying functions. The intra-chain/fluctuation scattering contribution domi-
nates at high ¢ values as expected. The inter-chain scattering oscillates about
zero, the absolute value is plotted and each sign change leads to an inverted
peak. The corona form factor is the sum of intra-chain and inter-chain scatter-
ing, and as a result the minima/maxima of the corona form factor correspond
to minima/maxima of the inter-chain scattering. The minima/maxima of the
corona form factor correspond to minima/maxima of the profile scattering, and
the height of the minima can be seen to be given by the fluctuation scattering

Single chain properties such as radius of gyration, the chain length, and the
Kuhn length can be obtained from the intra-chain scattering F.(q). The Haus-
dorff dimension dg of the chains can also be determined, and carry information
about the chain connectivity statistics. The interpretation of the inter-chain
scattering H (q) is more difficult, as it has a very complex ¢ dependence, but it
depends on the corona profile, as well as interactions between different chains
which introduce a “correlation hole” |20, 21]. The profile scattering contribution

(6.3)
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Figure 6.1: The contributions to the corona form factor appropriately scaled for
the standard micelle N = 44, L = 8.33b and R, = 3.33b.

(ox Acor(g)?) is simply the scattering one would obtain from a core-shell model
of the corona, and it only depends on the radial profile, hence the radial profile
can be obtained from this term. The fluctuation scattering is caused by chain
connectivity, chain-chain interactions, and core expulsion, and carries thermo-
dynamic information such as the osmotic compressibility and apparent second
virial coefficient of the corona.

A comparison of eq. (6.2) and eq. (6.3) shows that the scattering due to
interaction-induced correlations between different chains have been shifted from
the inter-chain scattering contribution into the intra-chain scattering, thus pro-
ducing the fluctuation scattering term, while leaving the profile scattering con-
tribution.

6.1 Article I

The intra-chain, inter-chain, and form factor amplitude (F., H, and A, respec-
tively) scattering contributions can be obtained directly from computer simu-
lations of the micellar corona as shown in the chapter on Monte Carlo (MC)
simulations. Computer simulations allow the partial scattering contributions,
as well as the single chain radius of gyration, and the radial profile p(r) to be
systematically investigated as function of the parameters chain length, number
of chains, and core radius denoted L, N, and R.,, respectively. Simulations can
also be performed with and without excluded volume interactions for different
models of chains, such as flexible and semi-flexible chains. A standard micelle
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was chosen having N =44, L = 8.33b, and R., = 3.33b, where the Kuhn length
b is used as length scale. Each of these three parameters was varied in turn,
while keeping the remaining two fixed at their reference values. The range of
variation was chosen to correspond to a range of ¢ values from 0.01 to about
five. The radius of gyration directly depends on the chain length, but it has only
an indirect dependence on the number of chains or the core radius due to the
effects of chain stretching. The surface curvature n = Ry(L)/R,, is essentially
fixed when the number of chains is varied, as chain stretching is negligible in
the simulated range.

Article T contains a qualitative discussion on how the corona form factor
and form factor amplitude depend on these three parameters with and without
excluded volume interactions. From the MC simulations it is seen that intra-
chain scattering is a slowly decaying non-oscillatory function, while both the
inter-chain scattering and corona form factor amplitude are rapidly decaying
and oscillating functions. Varying the number of chains has a large impact on the
corona form factor, as oscillations become apparent as the number of chains is
increased. This is caused by the number of chains dependent weighting between
the oscillatory intra-chain scattering contribution and the non-oscillating single
chain contribution. However, the phase of the oscillations of the corona form
factor and form factor amplitude is essentially unchanged, when varying the
number of chains. This is consistent with the observation that the corona width
is essentially unchanged, when the number of chains is varied.

Increasing the chain length simultaneously increases the width of the corona,
i.e. shifts the corona away from the core center, this results in a shift towards
smaller ¢ values of the corona form factor amplitude oscillations. Decreasing
the core radius shifts the corona closer to the core, and a corresponding shift
of the form factor amplitude oscillations towards larger ¢ values are observed.
This behaviour of the oscillations can be understood by the definition of the
corona form factor amplitude as the Fourier transform of the radial profile. It is
also apparent that the oscillations of the corona form factor are reduced as the
surface coverage is increased. This is a curvature effect that occurs when n ~ 1.

Figure 6.2 shows the scaled contributions to the corona form factor from
the intra-chain and inter-chain scattering, and it is apparent that the oscilla-
tory behaviour is replace by a negative power law-like behaviour, while a single
secondary peak remains for simulations with a large number of chains. A broad-
ening of the second secondary peak of the form factor amplitude is observed for
micelles with a large number of chains attached, while a broadening of the first
secondary peak is observed for micelles with large core radius or long chains.
This broadening is probably due to the different profile shapes obtained for a
large number of chains or a large curvature 7.

Article I also compares the corona form factor and form factor amplitude
from simulation with and without excluded volume interactions but with core
expulsion. For simulations without interactions the inter-chain scattering is re-
lated to the corona form factor amplitude as H(q) = Acor(q)?. For low surface
coverages no difference is observed between simulations with and without ex-
cluded volume interactions as expected, however, at high surface coverages a



58 CHAPTER 6. SUMMARY OF ARTICLES

10 --- (N-1)/N Abs(H) Rt X
- Fcor S~
-12 | L1
10
10" 10° 10'
gb

Figure 6.2: Scaled F. and H contributions to Fg,, for simulations varying chain
length L = 4b,13.67b and 38.17b (from top to bottom), the simulation with
N = 327 is shown for comparison. The inter-chain scattering H changes sign
and the absolute value is plotted, and each inverted peak corresponds to a sign
change, and the powerlaw tail has a negative sign.

clear decrease in the corona form factor can be seen for simulations with in-
teractions. A shift of the form factor amplitude oscillations towards smaller ¢
values is observed for simulations with excluded volume interactions compared
to simulations without excluded volume interactions for large surface coverages.
This is consistent with a stretching of the corona away from the core due to ex-
cluded interactions. As the chain length of the standard configuration is short,
no excluded volume effects are observed on the intra-chain scattering except for
the longest chains where a different power law behaviour are observed at high
q values for the corona form factor, where the intra-chain scattering dominates.
This is caused by the excluded volume interactions modifying the (ng)*dH be-
haviour from dy = 2 consistent with a random walk to dg = 1.70 consistent
with an excluded volume chain.

The model due to Pedersen and Gerstenberg [106, 107] provides expressions
for F., See, and Agypr as

Fc(qa Rg) = FDebye(ng)a

sin[q(Reo + dRy)]

A =
cor(Q) q(Rco + ng)

AC(ng)a

and
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H(q) = A%, (q).

Here the form factor amplitude of a flexible non-interacting chain is A.(¢R,) =
lexp(—z) — 1]/x with the abbreviation z = (qR,)? [108]. This model includes
the effects of connectivity in the scattering, but neglects chain expulsion from
the core region, however, this can be emulated by artificially shifting the chains
away from the core surface. The shift is controlled by the d parameter. Com-
paring eq. (6.2) and eq. (6.3) with the Pedersen-Gerstenberg model expressions
shows that Ffu.(q) = Fe(qRy) and v = 0, as a result the Ay(o) = 0, which
is consistent with the fact that chain-chain interactions are neglected in this
model.

A modification to the model due to Pedersen and Gerstenberg is presented in
article I, where the chains are shifted away from the micellar core, but connected
to the core surface by a rigid radially pointing rod.

The main topic of article I is to explore to what extend the two models can be
used to analyse the scattering data from the MC simulations, which include both
the effects of excluded volume interactions as well as semi-flexibility. Comparing
the model due to Pedersen and Gerstenberg to the modified model shows that
the modified model provides more accurate estimates of the chain center-of-mass
distance from the core radius, while the Pedersen-Gerstenberg model provides
a more accurate estimate of the radius of gyration. The chain center-of-mass
distance is estimated by fitting the radial profile, and the addition of a rod
can be seen to provides better fits of the corona form factor amplitude. This is
attributed to the improvement of the radial profile due to the addition of a rod
section.

The conclusion is that for ¢ < 1 the Pedersen-Gerstenberg model and the
modified model provide accurate estimates for the radius of gyration and core
radius, however, at larger surface coverages larger deviations becomes apparent
between parameter values estimated by fits and the true values sampled during
the simulations. While large deviations exist for ¢ > 1 the fits still provides
reasonable results.

6.2 Article 11

Article II presents a self-consistent analysis of the corona form factor F..(q)
and the solution profile scattering Fyo prof(g). All terms in the corona form
factor and solution profile scattering are obtained from the MC simulations,
when the RPA expression is used for the fluctuation scattering Fy,.(q). Hence,
the corona form factor and solution profile scattering can be compared without
introducing any model expressions for intra-chain scattering and radial profile,
and this comparison provides a way of investigating the validity of the RPA
approximation for the fluctuation scattering.

The intra-chain, inter-chain and corona form factor amplitude F., H, and
Acor are known from simulations. The excluded volume parameter can be ob-
tained by letting Feor(q) = Fiolprof(q), and since Ao (g) oscillates about zero,
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a value gg can be chosen, such that A.,(go) = 0. Then the excluded volume
parameter is
Fe(qo) [Fe(q0) + (N — 1)H(qo)]

Data are sampled at discrete ¢ values, and a linear interpolation was used
for finding the smallest value gy where A,y (qo) = 0, as well as estimating values
H(qp) and F.(qo). Error bars on v was estimated by calculating the variance of
the ensemble of v values consistent with the error bars on the scattering data
[82]. The corona form factor amplitude has several minima in general, and the
smallest go value is chosen as the inter-chain scattering typically has the smallest
error bar at low ¢ values.
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Figure 6.3: Comparison between Fp,. as obtained from simulations, and
Frpa = F./(1 + vF,) using the intra-chain scattering F. from computer
simulations. The excluded volume parameter v are obtained from eq. (6.4).
Curves are from top to bottom simulations varying number of chains N =
3,66, 131,327, varying core radius R., = 27.78b,9.44b, 2.53b, 1.48b (shifted down
one decades), and varying chain length L = 2b,8.33b,13.67b,38.17b (shifted

down two decades).

Based on the excluded volume parameter, the fluctuation scattering con-
tribution Ffj,. can be obtained from simulations and compared with the RPA
approximation using simulation data for the intra-chain scattering F.. This is
shown in figure 6.3, and there is an excellent agreement between the two ex-
pressions for the fluctuation scattering.

A similar excellent agreement is is obtained between the corona form factor
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and the solution profile scattering for the simulation scattering as shown in
figures 6.4, 6.5, and 6.6. This validates our approximation of using an RPA
expression for the fluctuation scattering contribution. From the figures 6.4, 6.5,
and 6.6 it can be seen that the fluctuation scattering Fyj,. defines the depths
of the minima of the solution profile scattering, and it can also be seen that the
profile scattering dominates the forward scattering as expected. The forward
scattering due to density fluctuation decreases with increasing surface coverage
consistent with the concentration dependence of the scattering from an ordinary
polymer solution.
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Figure 6.4: For (thick lines), Fyp prof (symbols), and Fpy. (thin dashed line)
varying number of chains N = 3,8,22,44,87, and 131, corresponding to o =
0.05,0.13,0.36,0.72,1.43 and 2.15 (circle, box, diamond, star, plus and cross
from bottom to top). The curves are normalised to coincide at large ¢ values.

This is the reason why the corona form factor was seen to decrease in ar-
ticle I, when comparing simulations with and without interactions. Without
excluded volume interactions Fyp,.(q) = F.(¢R,) and H(q) = A2, (q), while in
the presence of excluded volume interactions the fluctuation scattering contri-
bution decreases and the inter-chain scattering is modified due to the presense
of the “correlation hole”..

For an ordinary polymer solution it is predicted that the excluded volume
parameter has a universal dependence on the reduced concentration as v o
(c¢/c*)f(c/c*), where f(x) is some function, that is constant for small z [73].
Plotting the excluded volume parameter v against o as in figure 6.7 shows
that the data points falls approximately on a power law relation v(o) = ao?

with a = 1.35 + 0.02 and 8 = 0.95 4+ 0.02. That excluded volume parameters
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Figure 6.5: For (thick lines), Fyp prof (symbols), and Fyy,. (thin dashed line)
varying core radius R., = 1.48b,2.53b,4.94b, and 9.44b, corresponding to ¢ =
0.13,0.36,1.07, and 2.10 (circle, box, diamond, and cross from bottom to top).

from simulations varying the number of chains, chain length and core radius
collapses on a common curve, shows that the reduced surface coverage o is
the characteristic reduced parameter which describes the corona interactions.
Note the grafting density N/(4mR2,) is expected to be characteristic parameter
in the brush regime. The deviations observed at large and small coverages are
attributed to a weak dependency on the number of chains and surface curvature.
Deviations are also observed for simulations with only two and four statistically
independent segments.

As shown in the theory chapter a very simple relation exists between the
fluctuation scattering and the osmotic compressibility. The compressibility &
fulfils k = Fﬁic(q = 0) = 1+ v, and thus the deviations of v at low surface
coverages are dominated by one. The result is a universal behaviour of the
compressibility for surface coverages, except for large surface coverages where
deviations are apparent. These are attributed to the effects of the number of
chains and surface curvature on the corona structure.

The solution profile scattering expression Fyy p,rof using the RPA expres-
sion for the fluctuation scattering contribution has the interpretation of being
the scattering from a dilute/semi-dilute solution with a radial profile. The self-
consistent analysis shows that the solution profile expression provides an excel-
lent description of the corona form factor. On the basis of the agreement between
the solution profile scattering and the simulated scattering is we conclude that
the corona of a micelle can be regarded as a polymer solution with a certain
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Figure 6.6: Feor (thick lines), Fyp prof (symbols), and Fpyy. (thin dashed line)
varying chain length L = 2b,4b,13.67b, and 38.17b, corresponding to ¢ =
0.16,0.35,1.11, and 2.35 using (circle, box, diamond, and cross from top to
bottom).

radial profile. As the corona width is comparable to the radius of gyration the
corona is quasi-two dimensional.

6.3 Article IIT

While the self-consistent analysis validates that the solution profile expression
reproducing the simulated scattering, it does not confirm that the solution profile
expression can be used for estimating parameters for physical parameters of
interest when analysing experimental data. Hence, the aim of the article III is
to formulate expressions for F,,. and A, which can be used to extract physical
parameters, such as the radius of gyration, the excluded volume parameter v,
and the radial profile for a micelle by fitting experimental data. For F,.(q) the
following equations was used

9> R3
FDanielS (m%)
Friuc(aBy) = ’ B
fluc(qRyg) 1+I/FDebye(q2R3) .

— b -1 -1\ ,—z
FDam'els(x) = FDebye(x) + 15—L (4 + Tz — (11 + Tx )6 ) s
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Figure 6.7: The osmotic compressibility « plotted against reduced surface cov-
erage for simulations varying number of chains (circle), varying chain length
(box), and varying core radius (diamond). The inset shows the excluded volume
parameter v plotted against reduced surface coverage. The line in the inset is
the power law v(o) = 1.350"% and the corresponding osmotic compressibility
is shown as the line on the figure.

and

3 3 3 —om
e(n)zl—%ﬁ-w—m(l—e )

The equation is based on the RPA expression, but uses a chain form factor
based on the Daniels distribution in the denominator, while using the Debye
form factor in the numerator. This expression has been shown to provide a quite
accurate description of the scattering from a semi-dilute solution of semi-flexible
polymers [92]. The radius of gyration in the Daniels form factor is corrected by
the Kratky-Porod expansion factor due to semi-flexibility, which was described
in the theory section. The parameters are R, the radius of gyration, and v.
The excluded volume parameter, the ratio b/L was fixed at the value of the
simulation, in order to reduce the number of fit parameters.

The corona form factor amplitude is the Fourier transform of the radial
profile, and three radial profiles was used. The first is a Box with a Gaussian
tail (abbreviated BoxGauss) and given by
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0 r < R,
YBoxrGauss (T) = B Reo <r < Ry
Bexp [—( — Rch)Z/(282)] Rch S T

The last two profiles are two Maximum Entropy profiles where knowledge of
the first two (abbreviated the ME2 profile) or three momenta (abbreviated the
ME3 profile) was assumed, respectively. The radial profile is given by

(r) = 0 r < R
PMET) =Y Bexp|— Y™ an(r — Reo)"] 7> Reo

where B is a normalisation constant. For both profiles it is assumed that no
chains enter the core region. While the BoxGauss profile is an arbitrarily chosen
empirical profile, the maximum entropy profiles are less arbitrary. As argued
in the theory section, a maximum entropy profile is the least biased profile
consistent with the requirements that chains do not enter the core region, that
the profile is normalised, and that we posess knowledge of first m moments.
Expressions for A, (q) corresponding to the BoxGauss and ME2 profiles (m =
2) are given in the third article, while the form factor amplitude corresponding
to the ME3 profile (m = 3) is obtained by numerical integration.

The simulation results for Fg..(q) and Ao (q) were simultaneously fitted
by the corresponding expressions for Fio pror(q) and Acor(q), where the corona
form factor amplitude were derived from the BoxGauss, ME2, and ME3 radial
profiles. The radius of gyration, the excluded volume parameter, and the two
or three parameters required by the radial profile were fitted. For o < 1 all fits
provides very similar estimates of the fit parameters for the three profiles, and
the profiles estimated by the fits are in good agreement with each other and the
simulated data. For ¢ > 1 the fits using the ME3 profile provides significantly
better fits compared to the BoxGauss and ME2 profiles. This improvement of
the corona scattering fits is directly related to the improvement of the fits of
the form factor amplitude. Excellent agreement was also obtained comparing
the radius of gyration and radial profiles obtained from simulations to those
estimated by the fits. The v(o) dependence obtained from fitting v is similar to
that obtained from the self-consistent analysis, however, with slightly modified
constant and exponent: a = 1.42 + 0.03 and 8 = 1.04 + 0.02. This difference is
attributed to systematic effects caused by the expressions used for the fits.

Article IT and IIT demonstrate that the expression for the solution profile
scattering provides an accurate description of the micellar corona scattering,
and that the expression can be used to obtain reliable estimates of the physical
parameters: the single chain radius of gyration, the excluded volume parameter,
and the radial profile. From the excluded volume coefficient thermodynamic
information about the corona can be obtained from scattering experiments, just
as for a polymer solution. The difference is that for a polymer solution all the
observed scattering is due to F'fj,.. Tethering chains to the core has the effect of
creating an additional A2, (q) scattering contribution due to the radial profile

cor
of the polymer layer as it is confined to the micellar surface, and this scattering



66 CHAPTER 6. SUMMARY OF ARTICLES

dominates in the forward direction where the value Fyy,.(¢ = 0) is of particular
interest.

6.4 Article IV

Article IV presents a formalism for calculating the form factor and inter-particle
structure factor of various structures, such as triblock copolymers stars, and
micelles with arbitrary core geometries. The article proves that the form factor
of a composite particle consisting of non-interacting subunits can be written as

9 -
F(q) = (Z ﬂz‘) Z@ZFZ +2 BiBrA, <H \I’ék> Ay

i<k i=1

The particle is considered as consisting of a number of non-interacting sub-
units referred to by the indices 4,7 and k. Each subunit has a reference point,
which could be the center of a micellar core, the end of a chain, or the bound-
ary between two adjacent blocks on a copolymer. 8; denotes the total excess
scattering length of the i’th subunit, while F; is the Fourier transform of the
site-site correlation function, i.e. the form factor of the i’th subunit. A; is the
Fourier transform of the site-to-reference point distribution, i.e. the form factor
amplitude. For any subunit j and k it is assumed that there exists a unique
path of nj; steps along reference points of other subunits connecting reference
points subunit j and k. This could for instance be the block boundaries along
a 5-block copolymer. The Fourier transform of the distance distribution of the
1’th step between the j and k subunits is denoted W;k, i.e. it is a phase factor.

This expression has the following interpretation. The distance between two
sites on two different subunits j and k can be written as the a sum of a number of
steps, corresponding to site-to-reference point step, and a numner of reference-
to-reference point steps until the second subunit is reached, and finally a step
from the reference point of the second subunit to the second site.

Similarly the pair-distance distribution between two different sites on two
different subunits can be factorised into the convolution of distributions repre-
senting the site-to-reference point step (yielding form factor amplitude A;), a
product of the distributions representing the reference-to-reference point steps
(yielding phase factors \Il;k), and a step from the reference point to a site in
subunit k& (yielding Ag). This is due to the fact that the Fourier transform of a
convolution is simply the product of the Fourier transforms. This is only true
if the configurational average of the pair-distance distribution can be regarded
as the product of configurational averages of the individual steps, which is only
true if the subunits are non-interacting. Hence, this expression is valid for any
acyclic structures of subunits, where the interactions between different subunits
are negligible, while interactions within the subunit can be incorporated in the
expressions for F; and A;. Hence, all connectivity information about the struc-
ture is included, even though interactions between subunits are neglected. In
article IV it is shown how to include excluded volume interactions on the level
of a linear chains of polymer subunits, such as a block copolymer.
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Figure 6.8: Tllustration of possible the site-site correlations of a micellar struc-
ture.

An example: assuming the particle is a micelle which consists of two subunits
chains in the corona (index “c”) and a core (index “s”). No assumptions are
made about the core geometry. Then the possible site-site correlation functions
are intra-chain correlations, inter-chain correlations, chain-core correlations and
core-core correlations, as shown in figure 6.8.

The intra-chain scattering F, can be calculated from the pair-distance distri-
bution within a chain, while the core form factor F; can be calculated from the
pair-distance distribution between sites within the core. The distance between
two sites within the core can be written as two steps: a vector from one site
to the center, and a step from the center to the second site, as shown in figure
6.8. Thus the pair-distance distribution can be written as the convolution of two
identical step probability distributions Ps(r) describing the probability for a site
at position r relative to the center being within the core for a fixed core orien-
tation. Denoting by As(q) the Fourier transformation of the distribution Ps(r),
the pair-distance distribution is simply for core form factor Fy(q) = A2(q) by
virtue of the Fourier theorem for convolutions.

The vector distance between a particular site on a chain and another site
in the core can be written as the sum of three steps: a vector from the site
to the tethering point of the chain, a vector from the tethering point to the
core center, and a vector from the core center to the site in the core. Thus the
pair-distance distribution can be written as the convolution of the probability
distributions of the three steps, and the Fourier transform of this convolution
yields the product of the Fourier transforms of the probability distributions. The
step from a site on a chain to the tethering point is the form factor amplitude
of the chain yields a factor A.(q), the step from a site on the core surface to the
core center yields a factor ¥4(q), and the step from the core center to the site in
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the core yields As(q). Thus the chain-core scattering contribution has the form
Ac(q)Vs(q)As(q), where WU4(q) is the core surface phase factor.

The distance between two particular sites on two different chains can be
written as the sum of four steps: a step from the site to the tethering point,
from tethering point to the core center, from the core center to another tethering
point, and from the tethering point to the site on that chain. Thus the inter-
chain scattering has the form A.(q)¥4(q)¥s(q)Ac(q), as illustrated on figure
6.8.

Weighting the contributions with the proper total scattering lengths and
taking care of the weighing between intra- and inter-chain correlations the form
factor of a micelle with an arbitrary core geometry and non-interacting chains
is

Fmic(q) = (B + Bs) ™ <ﬁ§A§(Q) + %Fc(q)

D@ s awn@a@) . 60
0

The terms are the core form factor, the intra-chain scattering, the inter-chain
scattering, and the chain-core interference function. The intra-chain scattering
is proportional to the number of chains N, while the inter-chain scattering is
proportional to the number of pairs of chains N(N — 1), while the total is
N?2. This explains the weighting between intra-chain and inter-chain scattering
contributions, an orientational average has to be performed on the product of
Fourier transforms as the core surface is rigidly attached to the core.

In the special case of a spherical core, the probability of a vector r is within
the core is Py(r) = O(|r| — Re,)/(4mR2,/3), where O(x) is the step function
(O(x) =1 for z > 0 and ©(z) =0 for z < 0 ). The probability for a vector r to
be located on the core surface is Py r(r) = 8(|r| — Reo)/(47R%,). From these
simple distributions the surface phase factor and core form factor amplitude are

given by
Us(q) = /0 ~ drdmr? sin(gr)/(qr) Psurs(r) = sin(qReo) /(g Reo)

and
Ay(q) = /0 drémr? sin(gr) /(qr) Ps(r) = ®(qReo).

Thus the micellar form factor eq. (6.6) becomes

2
Fmic(Q) = (ﬁc + /33)72 <53@2(cho) + %FC(Q)

sin(qR¢o)

(N — 1)A2( ) <sin(qu)
qReo

2
N c\q ¢Ron > +2ﬁcﬁsAc(Q)

+3? @(cho)> :

This expression reduces to the expression for the micellar scattering pre-
sented at the start of this chapter (eq. 6.1) using the abbreviations of the
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Pedersen-Gerstenberg model with d = 0, and comparing eqs. (6.6, 6.2 and 6.3)
suggests that solution profile form factor for a micelle with an arbitrary core
geometry is
~2 [ 52 42 B2
Fmic(Q) = (ﬂc + ﬁs) <ﬁs As (q) + Nchluc(Q)
[N - Ffluc(q = 0)] A2
N cor

The rationale behind the derivation of the form factor can be used to derive
an expression for the inter-particle structure factor. The vector between two sites
on two subunits on two different aggregates can be regarded as consisting of a
number of steps from the site to the reference point of that subunit, steps along
a path from reference-to-reference points until the aggregate centre is reached.
Then a step from the center of one aggregate to the center of another aggregate,
followed by a path from that center along reference points of subunits until the
second subunit is reached, and a step to the final site on that subunit. The
intermolecular structure factor is

-2 Nk 2
Hss(q) = (Z /61> {ZﬁkAk (H qﬂc,k) } (Scc(q) - 1) )
[} k =1

Here index “c” denotes the center of the aggregate, and S..(q) is the center-
to-center structure factor. The term in the bracked is the form factor amplitude
A of the entire particle. The scattering from a solution of aggregates is the sum
of intra-molecular and inter-molecular scattering given by

-+

(@ +zﬁcﬁsAcor<q>As<q>> .6

o

P(q) = F(q) + Hss(q) = F(q) Sapp(9);

where the effective structure factor is given by

Sapp(q) = + 1.

In the special case, where aggregates consist of a spherical symmetric aggre-
gate with a form factor amplitude A(q) then Hys(q) = A(q)%(See(q) — 1) and
F(q) = A%(gr), which leads to Sypp(q) = Sec(q). Thus the apparent structure
factor corresponds to the center-to-center structure factor for spherically sym-
metric scatterers. This is a well known result for monodisperse suspension of
spherical scatterers [109].

The inter-molecular structure factor for a solution of non-interacting micelles
can easily be shown to be

Hmic(Q) = (/Bc + ﬁs)_2 (<55A5 (Q) + BeAcor (Q)>0)2 (Scc(Q) - 1) .

The corona form factor amplitude is given by a generalised core-shell model
expression Agr(q) = [z drA(r)¥s(q,r)p(r), where p(r) is the area density of
scatterers in the r sized shell, and A(r) is the area of that shell. It remains to
validate these generalisations of the micellar scattering.
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on the scattering from block copolymer micelles
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Effects of excluded volume interaction on the form factor of a block copolymer micelle model have
been investigated by performing Monte Carlo simulations. The micelles are modeled as a corona of
semi-flexible chains tethered to a spherical core. Simulated form factors are analyzed using the
model proposed by Pedersen and Gerstenberg. A slightly modified model is presented, in which
chains consists of a radially pointing rigid rod, onto which a Gaussian chain is attached. The straight
section emulates chain stretching near the micelle core. Both models are fitted to the simulation data
using two parameters, that describes the individual chains: the radius of gyration, and the average
center-of-mass distance to the micelle core. Based on a comparison between parameters obtained
from fits, and those obtained directly from the simulation, it is concluded that the models provide
good estimates for the radius of gyration and the chain center-of-mass distance for a low surface
coverage, while systematic deviations are observed for high surface coverage, where chains begin
to overlap, and excluded volume interactions becomes significan20@® American Institute of

Physics. [S0021-960600)51321-X]

I. INTRODUCTION formed, which emulates an experiment, but an experiment
carried out on a well-defined model system. The simulation
When diblock copolymers are put into a selective sol-results can then be analyzed as real experimental data, and
vent, that is, a good solvent for one block, and a poor solvenfrom the analysis correlations between scattering data and
for the other, the copolymers spontaneously self-assemblgyyctural properties of the simulated model can be deduced,
into aggregates. These micellar aggregates have a dense c@igj limits of validity can be established for particular mod-
and a corona of solvated polymers chains. Different moryg.
phologies will self-assemble upon variation of the concentra-  1he aim of the present work is to investigate the effects
tion, solvent or the relative length of the two blocks. Theseyt jnter_chain as well as intra-chain excluded volume inter-

morphologies include micelles with spherical, elliptical or _ione on the scattering form factor of micelles with a

cylindrical cores. At high volume fractions the aggregates;pherical core, and to examine to what extent the model pro-

m|ght_ order_ into structures such as: crystals struct_ure_s ol sed by Pedersen and Gerstenbaran be applied. This

spherical micelles, hexagonal rod structures of cylindrical . . ) .
: ! .~ “analytical model accurately describes the scattering from mi-

micelles, or the micellar aggregates can coalesce forming a

) . celles having chains that do not interact among themselves
number of continuous structures as for instance a lamellag

structurel? These colloidal polymer solutions are examplesamld V\I”ttT tlhff CO{E ) Cﬁ rg expulsmfn car:hbe emulatfed in \;C's
of complex fluids, which exhibit novel and interesting physi- model by litting the chains away from the core surtace. We
cal phenomen&:® present a modified model, which improves the Pedersen Ger-

Light scattering, small angle neutron or x-ray scatteringSte"P€rd model, when chains are excluded from the core. In
(LS, SANS and SAXS, respectivélgre powerful techniques this model th_e 'chaln_sectlor? is joined to the core surfacg by
for obtaining structural information about colloidal M&&ns of a rigid radially pointing rod. We also suggest im-
solutions! SANS combined with contrast variation tech- Provements of the models that, to some extent, include ef-
niques is an especially powerful technique, as it allows foffécts of excluded volume interactions. We have used Monte
the separation of the contributions from the various colloidCarlo simulations as a tool to investigate the excluded vol-
constituents. However, it is very difficult or even impossible Ume effects, and modeled the micelle as a number of semi-
to invert the measured scattering intensities and deduce tfiexible chains tethered to a spherical core. These chains in-
constituents structure directly, since all phase information igeract among themselves and with the core via excluded
lost in the measurement process. Instead, structures must gelume interactions. We have also made a number of simu-
inferred by fitting models to the experimental détZhis lations with core expulsion, but without chain interactions.
necessitates the development of analytical models, or semFhis allows us to gauge the effects of excluded volume ef-
analytical models as one obtains by parameterization of refects on the scattering from the polymer corona.
sults from computer simulations, to allow for a detailed in- To our knowledge, no study has previously been made
terpretation of the experimental data. Furthermore computehat focuses on the form factor of micelles with chains with
simulations allows ‘“computer experiments” to be per- excluded volume interactions. Previous studies of the struc-

0021-9606/2000/112(21)/9661/10/$17.00 9661 © 2000 American Institute of Physics
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ture of chains tethered to micelles have predominantly fochain, and, the step length. The radius of gyration measures
cused on determining the radial density proffle'? or the  the chain spatial extent. The Kuhn length measures the char-
conformational properties of chains in the cotddowever,  acteristic contour length of a semi-flexible chain, on which
the radial density profile contains insufficient information for bond orientations are correlated; for a flexible chain the
determining the full scattering function, because micelles ar&uhn and step lengths are equal. Scattering techniques probe
not centro-symmetric objects, as is assumed for core-shetiorrelations on various length scales, and we expect that the
models!* Absent from these models are the correlations duesingle chain scattering can be divided into three qualitative
to the chain connectivity, and the lateral density fluctuationgifferent regions: FoigR, less than unity(the Guinier re-
arising from the interactions between different chains. Simi-gion) the chains appear to be pointlike obje¢iausdorff

lar arguments hold true for self-consistent field thectfes, dimension 0) andF.~1. In the range whergR, are larger
due to the large fluctuations about the most probable path @han unity andyb is less than unity, the random walk nature
low surface coverage fractions. Core-shell models are natf the chains are probed. Since a random walk is a fractal
applicable to any of the simulations presented in this paperobject with Hausdorff dimension 2, we expect a scattering

This paper is organized as follows: In Sec. Il we presenfunction that behaves a‘scoc(ng)’Z. In the regime where
the two analytical models; in Sec. Ill we describe the Montegb is larger than unity, chains are probed on distances, where
Carlo simulations, and define the parameters that we sampthe bonds orientations are correlated and they exhibit rigid
during a simulation. In Sec. IV we report the results, com-rod like correlations with a Hausdorff dimension of 1, and
pare simulations with and without interactions, and discussve expect a scattering function that behaves s
the models in the context of the simulations, and Sec. & (qL)~*. The actual crossovers between these regions are
contains a summary of our findings. An Appendix containsvery broad, making it difficult to accurately estimag and
some practical information on how the partial scatteringb directly from location of the crossovers on a simulated
functions are sampled. F.(q) curve.

The characteristic scale of inter-chain correlati®g is
comparable to the radius of the micelle. Because both the
contributions to the total chain scattering function are nor-

Let q denote the length of the scattering vector, the normalized, inter-chain correlations will dominate the scattering
malized form factor{letting Ficai(=0)=1] of a block  for low g values, since the core radius usually is larger than
copolymer micelle with a spherical core can be written the radius of gyration. Because the characteristic intra-chain

distances are small, intra-chain scattering will dominate the

II. ANALYTICAL MODELS

1 total scattering at higly values.
. - [A2Pp2 2
Fmicend d) (pc+ps)2[psd> (@) +peFal(a) If we assume the micelle core is a homogeneous sphere
with radiusR.,, the normalized form factor amplitude for
+2pcpsSes(D P ()] 1) the core is*®

The form factor is comprised of three partial scattering con- . _

tributions: a core—core contributich?, a chain—chain con- ®(q,Rep) = 3[SIN(GReo) ~ AReo COIqReo) ] ) 3
tribution F;, and a chain—core contributich® [for core- (ARg)®

_ 2 . .
shell modeIch[_(q)_ Ses(@)°]. In th.'s paper the ‘pamal The remaining contributions to the micellar form factor
scattering contributions are normalized to unity in the are given by?

—0 limit. The total chain and total core excess scattering
lengths are denoted. and pg, respectively, and they are Fe(d,Rg) =Fcnaid A, Rg), (4
defined as pc=NVc(pehain psoven)  aNd ps=NVs(peore

— psowen), WhereV, andV, are the volume of a dissolved Sua(G.Ry Rem) = ¥ ALRY) SiN(QRem) |2 ®)

and core chain, respectively. A diblock copolymer micelle ecl 0 RgRem chairt 9-Rg gRem |’

have implicitly been assumed, such thatlenotes the aggre-

gation number. Finally the scattering length density of a dis-anOI

solved chain, a core chain, and the solvent is denptgg,, sin(gRgm)

Peore @Nd psonens TESPECtively. The total chain scattering  Ses(d:Rg, Rem) = tenaid A, Rg) —p—- (6
function can be subdivided into two contributions: intra- fem

chain correlations denote®., which arises from self- If we assume that excluded volume interactions are ab-

correlations within each chain, and is strongly influenced bysent, and that chains are flexible, they are described by:
chain connectivity, and inter-chain correlations dendégd 7X
which is an interference term, that describe correlations be- 2(e7-1+x)

tween different chains. When these partial contributions are Fenair 4:Rg) = X2 ' ™
normalized, the total chain scattering function becomes: g
an
1 N—-1
Fcl(q):NFc(q)JrTScc(q)- 2 1—e %
‘/’chain(qug) = x ' (8)

The length scales of a single chain aRg: the radius of
gyration, b the Kuhn lengthL is the contour length of the wherex:(ng)Z.
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Fenain is the form factor of a flexible chain given by chain—chain interactions in the corona, both models, how-
Debyel” and y¢nainis the form factor amplitude of a flexible €ver, take chain connectivity explicitly into account, and
chain given by Hammoud®. R, is the chain center-of- they mimic the chain exclusion from the core by raising the
mass(CM) radius, i.e., the distance from the core center tochain CM above the core surface. Since chains are described

the CM of the individual chains. Core expulsion is mimicked by the Debye and Hammouda expressions, finite length ef-

by letting Rcn=Rg+dRy (with d~1), which lifts chains

fects and effects due semi-flexibility are not included. In the

away from the core surface. This has been shown by MontBc»—0 limit model 1 reduces to the expression for a star
Carlo simulation3to be a good approximation of core ex- polymer:

pulsion. We refer to this model as “model 1" in the remain-

der of this paper.

We have carried out a modification of model 1 by adding

a radially pointing rod, of length=R.,,— R, that joins the

Ill. MONTE CARLO SIMULATION

In the simulation we model the micelle as a spherical
core, havingN semi-flexible chains tethered to the surface.

c“hain ori%inating at the chain CM to the core surfacegach chain in turn consists ofbonds(or n+1 vertice$ of
(“model 2"). The rod section attempts to mimic the effect of |ngth |, The valence angle between subsequent bonds is

chain stretching close to the micelle core surface. LLéte

fixed at 135.585 degrees, while the dihedral angle is free.

the total contour length of the rod and chain sections, anepjs results in a Kuhn length=6l,, such that the radius of
x=1IL the fraction of polymer in the rod section. Then the gy ation of a flexible and semi-flexible chain coincides in the

partial scattering contributions are given liguppressing
function arguments for clarijy

Fc(Qng Rems )= (le)chhainJerFrod
Si(ql)
ql
sin(qRem)
ARem
sin(qRcm)
chm

+2x(x—1) ¥chain ) 9

2
2 2
X Prod

Scc(q,Rg chmrI):(liX)zl//ghai{

+2x(1—=x) ¥chairkProd

(10

sin(gRem)
Scs(ang 1Rcmvl):(le)wchaianchrX‘Prod-
cm

(1

The individual rods are described by the form factor of

long chain limit.

We introduce excluded volume interactions by placing
hard spheres along each of the chains, and a large hard
sphere at the core center. We have 6 vertices per Kuhn length
of chain, which corresponds to one sphere at each vertex. We
have chosen the hard-sphere ragias0.1b, a choice which
reproduces the binary cluster integral of polystyrene in a
good solvent?

Each of the tethered chains on the micelle is initially
generated by growing it from a root. A root consists two
bonds, the first bond originating at the micelle core surface
and a virtual zeroth bond ending on the surface, each of the
two bonds point in a random direction. The two root bonds
and their cross product defines a coordinate system, which
can be used as a basis for adding a new bonds with a given
valence and dihedral angle, and this procedure is easily iter-
ated.

The micellar corona is generated by creating roots until

an infinite thin rod® and the form factor amplitude of a rod, all chains have roots, then bonds are successively added to

respectively:

2 4
Frodd,1)= GSi(ql)— a7 sir?

12
a) 2

Iq
E )
and

1
@rod( 1, Rem s Reo) = a[Si(chm)_Si(cho)]: (13

with Si(x)= [} (t~*sint) dt.
The rod section will usually be short{R;) compared

the shortest chain, until all chains have the desired number of
bonds. Every time a root is created or a bond is added, it is
checked for overlap with the existing chains and the core. If
an overlap is detected then 20 bonds are removed from the
chain. If this includes removing the root, then a new root is
generated at a different location. A micelle with a dense
corona is difficult to generate, therefore we artificially reduce
the chance for overlap during the creation of the initial mi-
celle configuration, by limiting the range of the dihedral
angle to the interval —60°,60°. This tends to stretch the
chains, thereby reducing the probability for overlap, while

to the contour length of the chain section, and thus give onlyhe micelle is grown.

a small correction to the total chain scattering. However, the  During the Monte Carlo(MC) simulation we update
addition of the nonoscillatory rod term to the oscillatory chains using the pivot algorithm of Stellman and G&riEhe
chain term in scattering expression HGl) is more pro- chain vertices are periodically corrected for numerical errors
nounced, as it influences both the phase and amplitude of thietroduced by the repeated multiplication of rotation matrices
oscillations. The equations defining model 1 and 2, E)s-  during the pivot moves; our correction algorithm is similar to
(6) and Eqgs(9)—(11), are purely due to the geometrical as- that used by Stellman and Gans. Furthermore, we use two
sumptions: The chain CMs are evenly distributed on a sphergpes of surface updates; the first type moves the chain on
with radiusR,,, and that chains are tethered to the end of ahe core surface by pivoting the entire chain about core cen-
rod; whereas the objects that scatter radiation are describeédr. The second type reorientates the chain by pivoting it
by the form factor and form factor amplitudes, E¢8, (8), about the tether vertex. The zeroth bond is not used when
(12), and (13). Neither model 1 nor model 2 accounts for collecting data, nor is it used when checking for chain over-
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lap; however, it is pivoted with the rest of the chain, and thistions over 13 different directions for each configuration
ensures that the first two bonds define a local coordinateample. The partial scattering contributions are all normal-
system for the chain, that is, rotated along with all the MCized to unity in thegq— 0 limit. Note that the core form factor
moves, which provides a constant basis from which to ruramplitude has been taken out of the chain—core scattering
the Stellman and Gans correction algorithm. contribution, which allows data obtained from the MC simu-

After each chain update, we check for core overlap lation to be compared to the corresponding expressions in the
intra-chain overlap, and inter-chain overlap. An update isanalytical models.
rejected if it overlaps. Both types of chain checks are per-
formed_ using the “'zippering method?® The inter-chajn IV. RESULTS AND DISCUSSION
check is performed in an order where chains that previously
overlapped with the updated chain are checked first. Thisis a In order to describe the dependence of the various prop-
heuristic attempt to check chains more prone to overlap beerties on surface coverage, we define a dimensionless mea-
fore others, which on average reduces the time spent osure of surface coverage as the ratio between the area of a
checking for inter-chain overlap. single chain, defined by the radius of gyratiBg of a un-

After a micelle is grown it is equilibrated for 200 times perturbed semi-flexible chain with a finite number of stéps
the total number of degrees of freedom of accepted M@nd the surface area available per chain at a dist&qge
moves to avoid sampling the initially biased configuration. A+ Ry from the core center:
simulation consists of 50 or 100 blocks, each block is the N7R2
configuration average of 100 samples, and 1000 MC updates , — ¢_ (19
is performed between each sampling. Error bars are esti- 477(Rgo+ Rp)?
mated from the fluctuations of block averages.

Let r;, be the position of th&th vertex on theth chain
relative to the core center. In the followinigy denote chain
indices with a 1. .. N range, and,| denote vertex indices
with a 1, ... n+1 range. During a simulation, we sample
the average chain CM radil&.,,, and the square radius of
gyration Rg of the individual chains. These are defined as:

Our surface fraction is analogous to the dimensionless
c/c* concentration in semi-dilute solutions, where is the
concentration at which the individual polymers begin to
overlap. At a surface coverage much less than one, chains are
separated and their conformation mainly influenced by core
expulsion and expansion due to excluded volume effects
within each chain. We expect that as the surface coverage

) 1 reaches unity, polymers begin to overlap and the interaction
= <N Z \Rcm,i|> with Rcm,i:m g Fiks between different chains becomes more pronounced. Curva-
(14 ture is another effect which influences the properties of the
micellar corona. When chains are tethered to a flat surface,
and they will approximately be uniformly stretched away from
the surfacdthe Alexander—de Gennes approximajionor-

Ri= <(n+ N > 2 (Rem,i —Tik) > (15  der to balance the elastic stretching energy and excluded vol-

' ume interaction between monoméfddowever, chains teth-
We also sample the partial scattering contributions, corered to a spherer any convex surfagavill gain a relatively

responding to the chain self-correlatiéi(q), the chain— larger accessible volume at constant surface coverage, as
chain correlation functiors;.(q), and the chain—core corre- they stretch away from the surface with a large curvature
lation functionS.s(q); these are, respectively, given by: (i.e., small corg compared to chains tethered to surface with
low curvature(i.e., large core We use the dimensionless
Fc(q)=< 1 E (E o ik (2 eiqr”) > ’ ratio » between the radius of gyration and t_he core radius as
(n+1)2 [ a measure of curvature effects. When this ratio is small,

chains behave as they are tethered to a flat interface. If the

ratio is large, i.e., chains have a large radius of gyration
e—iqrik) compared to core radius, the micelle becomes more like a

star polymer. These proposed measures of surface coverage

and curvature will fail, if chains are stretched away from the
DS eiq'il) > (17 core to such an extent that the chains can no longer be con-
7 9 ’ sidered to be isotropic, i.e., when the chains form a brush, or

if the chains are so short that their radius of gyration and

and contour lengths are comparable.

We have defined a reference micelle haviNg-44
= iar
Ses(@) <RE<(n+1)N 22 )>

(18 chains, core radiuR,,=3.3%b, and contour length./b
=8.32 corresponding to=50 bonds. We have performed
A practical description of how these quantities are evalusimulations, varying each of the three parameters in turn,
ated during a simulation is presented in the Appendix. Thevhile keeping the remaining two parameters fixed at their
averages consist of both an orientational average, and a coreference values. Eighteen simulations have been performed
formal average over nonoverlapping conformations. Theseith the number of chains ranging from 1 to 360, corre-
are performed by averaging the partial scattering contribusponding to a surface coverage in the range from 0.01 to 4.9.

1
S°°<q>‘<N<N_1><n+1>zZ 3

X
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FIG. 1. Total chain scattering functions when varying the number of chainsFIG. 3. Total chain scattering function when varying the chain length. The
The simulations withN=6 (circles, N=44 (boxes, and N=160 (dia- simulations withL = 1b (circles, L=28.32 (squares andL=60.6D (dia-
monds, shifted down half a decadeorrespond to surface densities mondg correspond to surface densities=0.11, 0.67, and 2.59, respec-
=0.09, 0.67, and 2.44, respectively. Curves are simulation results withoutvely. Curves are simulation results without excluded volume interactions

excluded volume interactiondull), model 1 (dash-dotte and model 2  (full), model 1(dash-dottedand model 2dashed fits.
(dashed fits.

weighting between the inter- and intra-chain scattering con-
16 simulations varying core radius in the rangetripytions to the total chain scattering. These simulation re-
1.24-22.1Db, corresponding to a surface coverage fromsyits are well described by both the analytical models from
0.02 to 2.4, and 11 simulations varying contour lengths ingec. || (these fits are not shown in the figure€omparing
the range 1.6-60.6D corresponding to a surface coverage noninteracting simulations to simulations with interactions

in the range from 0.1 to 2.6. allows us to identify features in the observed scattering
Simulation results for the total chain scattering arewnhich are due to excluded volume effects.
shown in Figs. 1-3, for low ¢~0.1), medium ¢=0.67) A qualitative examination of the simulation results

and high ~2.4) surface coverage. The medium resultsshown in Fig. 1 reveals that the total chain scattering has a
correspond to the reference micelle, which is shown in alk,ery nontrivial dependence on the number of chains for
figures as a common basis for comparison. The total chaigimulations with excluded volume interactions compared to
scattering from simulations carried out with core expulsionthe noninteracting simulations. The general behavior ob-
but without excluded volume interactions, is also shown orseryed is one where the scattering intensity at ljgralues
the figures. These are termed noninteraction simulations iﬂrops, while oscillations become more pronounced, as we
the remainder of the paper. Scattering from these simulationgcrease the number of chains. This is a direct consequence
is independent of the number of chains, except for they weighting of intra-chain and the oscillatory contribution
from inter-chain correlations in Ed2), and is clearly ob-
served on the noninteraction simulations. Simultaneously,
the excluded volume interactions causes the first minima to
grow progressively more narrow, while the higher order os-
cillations appear to be attenuated, when compared to the
noninteraction simulations. The noninteracting simulations
are well described by both models, and since the inter-chain
contribution in both models is always positive, the minima in
the total chain scattering correspond to the zero points of the
inter-chain contribution; thus the depth of the minima is de-
fined by the intra-chain contribution. The fact that the
minima of the simulations with excluded volume interactions
are below those of the simulations without interactions leads
AN us to conclude that the inter-chain contribution is negative at
T . | : L the first minima, and at the higher order oscillations, since
b the intra-chain contribution is only slightly affected by the
increase in the number of chains.
FIG. 2. Total chain scattering function when varying the core radius. For By examining the pair distance distribution correspond-
simulations v_vittho=9.8€b (circles, shifted down a de_cal;kRm=3.33) ing to the inter-chain correlatior&..(q) for: (i) simulations
(squares, shifted down half a decadand Rq,=1.24 (diamonds corre- b1t core expulsion and excluded volume effeatst
sponding to surface densities=0.11, 0.67, and 2.43, respectively. Curves . N . .
are simulation results without excluded volume interactiol), model 1 shown, but described by mode; 1ii) simulations with core
(dash-dottefland model 2dashed fits. expulsion but without interactions between different chains;
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and (i) full interacting chains, we observe that the intra- 10° B T T T — 0
chain interaction introduces a correlation hole in the short

range part of the pair-distance distribution. At low surface
coverage, chain overlap is negligible, and effects of the hole 1
are absent from the observed scattering. However, as th~
surface coverage increases, and chains begin to overlap, arS: E
the shape of the correlation hole becomes clearly defined 8,5+]
This is consistent with the correlation hole associated withz
semi-dilute polymer solutions and polymer méfts. 2

Figure 1 shows an inward shift of the first secondary
peak as the number of chains increases, when comparin
simulations with and without excluded volume interactions.
This is consistent with the expectation that an increase in
chain interactions forces the chain CM away from the core.
A very slight decrease in scattering at highvalues is ob- qb
served er th_e low Surf.ace covergge SImUIat.'on’ which I§ du%IG. 4. Chain—core scattering when varying the number of chains for the
to the slight increase in the radius of gyration due to intra-simulations shown in Fig. 1. The medium and high surface coverage curves
chain excluded volume interactions. The decrease of scattefiave been shifted down two and four decades, respectively. Curves are
ing at high values for higher surface coverage is caused b)ﬁ'jr:;:"_‘gg{‘te;je;:é‘?n‘é"é‘2|°;;:;;é‘;jdfﬁgl volume interactioffisil), model 1
the negative inter-chain scattering contribution, which de-
cays slower than the noninteraction simulation results.

A qualitative pairwise comparison between Figs. 2 and 3he intra-chain term is strongly affected by the effects of the
shows curves that appear to be identical except for a scalgyrelation hole due to the increased curvature and surface
factor. This is to be expected since the simulations shown igoverage.
the two figures have nearly identical surface coverage, cur-  Figures 4—6 show the logarithm of the absolute value of
vature measuren=Ry/Rc,, and number of chains, and the chain—core scattering, a term that only depends on the
these are the dimensionless quantities that describe the cgydial density distribution of chains. This term oscillates
rona. Thus we expect the two scattering contributions to folaround zero, and for each sign change the logarithm gives
low a scaling behavior of the form: rise to an inverted peak. A qualitative comparison between

the chain—core scattering shown in the figures reveals that

S(A)=T5,,n(ARg)- (20 the frequency of the osgillations dependg strongly on the

The curves shown in Fig. 2 coincide at highvalues, ~chain length and core radius, but they are only slightly per-
where the intra-chain scattering contribution dominates. Thigurbed by a variation in the number of chains. The noninter-
is to be expected, since the radius of gyration is only peracting simulations are well represented by both models,
turbed by the reduction of the core radius. However, thevhere the oscillatory behavior originates in the dependence
reduction of the core radius moves the chains CM closer t®N the chain CM radius. This explains why increasing the
the core center, which corresponds to a shift of the oscillanumber of chains only slightly effects the oscillations, com-
tions toward larger values as observed. In Fig. 3 the large Pared to simulations where the core radius or radius of gy-
change in the radius of gyration associated with the increase
in the chain length is clear from the decrease of scattering in
the highg range. However, as the chains become longer, the
chain CM move away from the core, which corresponds to a E
shift of the oscillations toward loweg values, which is also F
observed. In Fig. 3 we observe a clear difference in the deca)
of the intra-chain contribution for the longest chains. The &
decay is given by cﬂRg)’””, wherev is the critical length
exponent, which isy=0.5 for a random walk, and
=0.588 for a self-avoiding random walk.For simulations
with short chains this decay is not observed due to finite size
effects. 10

For the simulations shown in Figs. 2 and 3, the ampli-
tude of oscillations due to the inter-chain scattering contri-
bution is observed to decrease with increasing surface cov 103 I
erage and decreasing core radius, i.e., for increasel gb
curvature. For the noninteracting simulations, this is due to
the fact that intra-chain correlations dominate the inter-chairfrlG. 5. Chain—core scattering when varying the core radius for the simula-
correlations in they range, where oscillations would be ob- tions shpwn in Fig. 2. The medium and high surface coverage curves haye

- been shifted down two and four decades, respectively. Curves are simulation
served, and as a result oscillations appear to be attenuatggdsiis without excluded volume interactioffall), model 1 (dash-dotteq
This is also true for the noninteracting simulations, howeverand model 2dashei fits.
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10° -~ T 0 as a slightly more accurate fit to the first oscillation for
h . model 2.

Model 1 and model 2 fits to the simulated the chain—core
scattering are shown in Figs. 4—6. For surface coverages less
than unity, the fits are in good agreement with the simulation
results except for some phase and amplitude deviations at
high g values. The amplitude deviations are caused by the
failure of the Gaussian chain form factor amplitude in repre-
senting the simulated chains, analogous to the situation for
the intra-chain scattering contribution. The addition of a rod
section to model 1 yielding model 2 has visibly improved
both amplitude and phase matching. The rod term has the
, R . R effect of shifting the zero points of the chain—core scattering
contribution of model 2 given by Eq11), which explains

qb the improved phase and amplitude matching. For high sur-
FIG. 6. Chain—core scattering when varying the chain length for the simu-fa':e den;ltles the_ second secondary pgak 'n Fig. 4 is broad-
lations shown in Fig. 3. The medium and high surface coverage curves hav@ned, while the first secondary peaks in Figs. 5 and 6 are
been shifted down one and two decades, respectively. Curves are simulatitoroadened. Neither model reproduces this broadening, which
results without excluded volume interactioffall), model 1(dash-dottegl we believe is due to the high monomer density close to the
and model 2dashed fits.
surface.

When comparing values fdRy and R, obtained from
simulations with those obtained from the fits, we need to

ake some corrections for model 2. The two fit parameters

Abs(S_(gb)

0 —wtrs
haTm

T

g
10,7

ration of the chains changes. In the latter cases the chai ) ; ; .
CM moves closer or further away from the core, and this esgrlbe the Gaussian _chaln part of the chain, gmd not the.rod
corresponds to the observed shift of the oscillations towar&e(_:t'on'_The rod sect|on_decreases_the chain CM ra_dlus,
larger or smalleq values; whereas an increase in the numberWhlle It increases the ra_d|us of gyrat|on._ These corrections
of chains only perturbs the radius of gyration slightly and wetan be calculated analytically, and are given by:
only observe a slight shift of the oscillations shown in Fig. 4. |2
We have fitted the model expressions Far(d, Ry, Rerm) (Rem)cor=Rem= 5 (21)
andSc(q,Ry,Rcm) simultaneously to the corresponding data
obtained from the simulation. We have usegandR., as and
fit parameters and fixed the number of chalsand core
radius R;, at the values used in the simulation. The total
contour length is fixed dt =nly. The contour length along
with R, defines the weighting between the scattering from
the rod and chain sections for model 2 fits. ) |2 I(L—=1)
Figures 1-3 show model 1 and 2 fitted to the total chain + 122 + 312
scattering for simulations with excluded volume interactions.
It is apparent that both models show systematic deviations at The correction of the total CM radius is the weighted
high q values. At largeq values the intra-chain scattering average between the rod and chain CM, while the correction
term F.(q) dominates the total chain scatterifg,(q), and  to the radius of gyration was obtained by expanding @§.
both models use the Debye expression for the chain selNote again that=R.,,— R, is the length of the rod section,
correlation function. However, the simulated chains arewhich connects the core surface to the chain segment starting
semi-flexible and have a finite number of bonds, and thisa distanceR.,, from the core, whileL is the total length of
influences the self-correlation function at high where a  the rod and chain section. In tthe-0 limit the rod section
crossover to rigid rodlike scattering is expected. As a resuland associated corrections vanish, while inlthel limit the
of this observation, we have limited the fit range qb  chain segment vanishes. In the limit where the chain section
<4.5, where the Debye expression works reasonably wellvanishesR.,, moves inward by /2, which is the location of
Note that both models fit the noninteracting simulation datethe rod CM, and the radius of gyration correction reduces to
in this range. L2/12, which is the radius of gyration of a rigid rod of length
The fits are in very good agreement with the simulationL.
data for surface densities~0.1, but as the surface coverage Figures 7-9 show a comparison betweRp and R,
increases toward unity, the minima become deeper, and botibtained from the fits shown in Figs. 1-6 and the values
models fail to account for this since they fail to reproduce theobtained directly from the simulation. All figures show the
negative inter-chain scattering contribution due to the correenset of chain interactions effectsat- 1. For the two simu-
lation hole. However, both models are able to reproduce th&tions where a minimal surface coverage limit is well de-
correct oscillatory behavior, and can account for the heighfined, i.e.,N=1 andR.,=22b, both simulations show that
of the first oscillation. The difference between models 1 andl=R;,—R;,=1.08@R,. The simulation results shown in
2 on the total chain scattering is marginal, and only shows ufrig. 9 display a qualitatively different behavior compared to

I(L=1) (L=1)?
<R§>mR§(3 TRAT )

(22)
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FIG. 7. Plot of radius of gyratiotbottom curve against the left axiand the FIG. 9. Plot of the radius of gyration and chain CM radius for simulations
chain CM radiugtop curve against the right axihen varying the number  when varying the chain length. Symbols as in Fig. 7.
of chains. Symbols: Radius of gyration from simulatitircles and full
curve), chain CM radius from simulatiofbox and full curve, model 1 fit
(crosg, and model 2 fit(plus).
which explains why it provides a more accurate estimate of
R.m- For the high surface coverages, the fits only agree with
those shown in Figs. 7 and 8. In Fig. 9 the chain lengththe simulations results for low values. However, they still
varies, which has a large impact on the radius of gyrationprovide estimates of the two fit parameters. This is because
while varying the number of chains or the core radius onlythe location of the first inverted peak of the chain—core scat-
has an indirect effect on the radius of gyration, which ex-tering provides an estimate Bf,,,, while the lowq behavior
pands slightly due to increased chain interactions. (of model 2, Scs(q)~1f(3R§+ R2.)q%/6, contains infor-
A qualitative comparison of the estimate of the two mation onR, andR.,.
models ofR, and the simulation result shows that model 1 A quantitative comparison of the fit results shown in
provides a better estimate for the radius of gyration over &@igs. 7-9, show that for surface coverage 0.1, the fits are
large range of surface densities, except for the simulationsery good, and the value of the fit parameters are very close
with long chains, where there is no discernible differenceto those obtained directly from the simulations. As the sur-
between the two models. We expect this to be caused by &iace coverage is increaseddo- 0.67 (our reference micelle
overestimation of the radius of gyration, when the rod secclear deviations become apparent in the total chain scatter-
tion is a significant percentage of the total chain length. Coning. The deviation between simulation and fits Ry is 1%
versely, model 2 provides a better estimate of the chain CMor model 1, and 7% for model 2, while tHe,,,— R;, de-
radius, which is due to the fact that the rod section improvesiation is 19%, and 12%, respectively. This translates into a
the representation of the radial density distribution caused bgeviation forR.,, of 5%, and 3%, respectively. For a sur-
core expulsion. One exception is the simulations varying théace coverage ofr~2.4, the models only reproduce the
number of chains, where both models consistently underesimulation data in for lowqg values, but they still provide
timateR;m— R¢, (Model 1 by 20%, model 2 by 12%which  reasonable estimates for the radius of gyration and chain CM
is due to the bad phase match in Fig. 4. Model 2 consistentlyadius. For the simulation varying the number of chains
shows improved phase matching compared to model Io(N)=2.44] the deviations forRy is 5%, and 13% for
model 1 and 2, respectively. The deviations Ry, is 6%
and 4%. The deviations fd®.,,— R, is a about factor of 3
2 T T —? larger. For the simulation varying the core radfus(R..)
=2.43] the Ry deviations are less than 10%, however, the
deviations forR.,, is 20%, and 11% for the two models,
respectively. The deviations f&,,,— R., are a about factor
F 2 of 2 larger. For the simulation varying the chain length
e | 1 °|‘8 [o(n)=2.59], both Ry deviations are 6%, while the devia-
g
o

tions for R.,, are 21%, and 15%, respectively. The devia-
tions for R.,,— R, are 1.5 times larger.

sl L os As already mentioned, we have also fitt_ed the _models to
H—ﬁw-é—é—em—&w the simulations without excluded volume interactions, and
r both models produce good fits as expected. Model 2 yields a
N N Y somewhat better fit to the simulations, and provides an im-
o o R ! proved estimate of the chains CM radius, when these are
oR,,) compared to the simulation results. Conversely, model 1 pro-

FIG. 8. Plot of radius of gyration and chain CM radius for simulations when Vides a slightly better estimate of the radius of gyration. This

varying the core radius. Symbols as in Fig. 7. behavior is consistent with the results for simulations with
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excluded volume interactions. These fits are not shown in theod section overestimates the radius of gyration from the

figures. stretched chains, when the rod section is a relatively large
percentage of the total chain length. However, the rod sec-
V. SUMMARY tion modifies the model such that it provides a more realistic

We have performed Monte Carlo simulations of a modelrepresentation of the radial density distribution, and thus pro-

of spherical block-copolymer micelles, simulations haveVIdes a more accurate chain CM radius estimate.

been performed with and without excluded volume interac-. In the prlesenthpapf(far we hfave Iusdedd Molnte Cgrlo S|m_u|a—
tions, in order to qualitatively probe the effects of excludeg!'Ons 0 analyze the effects of excluded volume interactions

volume interactions on the micellar scattering function. weo! spherical block copolymer mlcelles,.and we have evalu-
ted two models that describe these objects. Generally, mod-

conclude, that the observed effects can be attributed to . f
correlation hole introduced by the excluded volume interac®'S ré necessary to extract data from scattering experiments,
hich do not allow for direct inversion of the experimental

tions, which strongly affects the inter-chain and chain—coré" ) ) ) .
contributions to the micellar scattering for micelles with highreSUItS in terms of Phys'c"%" structures and thelr_assouated
surface coverage. parameters. Analysis an(_j interpretation of experimental re-
Furthermore we have analyzed the simulation data in théUItS require a Iargg toolkit of different models. But the qual-
context of the model of Pedersen and Gerstenberg and d of the interpretation can only b_e as gooq as the quality of
improved model, where chains are connected to the micell e model in reprt_esentlng a p_hysu:ally realistic stru_cture. o
surface by a radially pointing rigid rod, which is a crude evaluate the quality of a particular model, well-defined test

model for the chain stretching close to the core surface. Botf{?SeS need to be examined for this Monte Carlo simulations

models take explicit account of chain correlations due e Very well suited.

single chain connectivity, but neglect excluded volume ef-

fects. Both models approximate the effects of core expulsioMPPENDIX: CALCULATION OF PARTIAL

by lifting the polymer corona CM away from the core sur- SCATTERING FUNCTIONS

face. We have fitted the models simultaneously to the two 4 resumer, denotes the position of theth vertex on
scattering contributions; the total chain scattering functionyaith chain relative to the core cent@anges of indices as
and chain—core scattering contributions as obtained directlyjgfineq previously

from the Monte Carlo simulations. The fits were performed | ot the phase sum of theith chain be z(q)
v_vith only two free_ parameters, i.e., the chain radius_ of 9yra—, exp(—ir,q); then the phase sum of the entire polymer
tion apd the_cham_ CM rgdlus. Both mpdels proylde VelYcorona is given byv(q) = =z(q). The chain self-scattering
good fits to simulations with core expulsion but without €x-¢ction, chain—chain and chain—core interference contribu-

cluded volqme inter_actipns. _ _ _tions are then given by:
To avoid complications due to the semi-flexible chains
we have simulated, the fit range was restrictedjie<4.5. 2 %
. L. . + = * 7.
This restriction could be removed by applying a more accu- (N+1)°N Fe(Qn) Z L) (A1)

rate model for the chain form factor and form factor ampli-
tgde_(? andzg for instance a model derived from the Daniels (n+1)2N(N-1) SeelQn) = <w*w— 2 z Zi>1 (A2)
distribution”® However, a chain form factor and form factor i
amplitude based on the Daniels approximation are not valid
for our reference micelle, since it has only eight statistical (N+ 1N Ses(an) =(Re(w)). (A3)
independent segments. Another possibility is an empiric ex- Herew* denotes complex conjugation of The aver-
pression for semi-flexible chaifsThe longest chains simu- ages are taken over the allowed chain conformatiansMC
lated shows the decay expected for excluded volume chainayerage and micelle orientations. For each MC sample the
and these require a chain form factor that can account foscattering functions are sampled for a number of directions,
excluded volume effecté. We are currently working on de- M, of theq vector. The resulting partial scattering functions
riving an empiric expression for the form factor and form depend only on the magnitude of the scattering veqtor
factor amplitude of a semi-flexible excluded volume chainLet Ny be the number of), values sampled per MC sample.
with a finite number of bonds, using Monte Carlo techniques.  Each time an MC sample is madé,NGN(n+1) com-

For simulations with surface coverage less than unityplex exponentialgi.e., two trigonometric functionshave to
fits of model 1 and 2 to the simulation provide accuratebe evaluated, which should be compared to Kfén+ 1)?
estimates of the radius of gyration and the chain CM radiugvaluations that a direct space sampling method would re-
compared to those obtained directly from the simulation. Theuire to calculate the pair-distance distribution. Reciprocal
fitted parameters show systematic deviations due to excludegpace sampling is clearly a vast improvement, since we are
volume interactions for surface coverages above unity. Howfree to chose botM andN, . However, this is still by far the
ever, the fits still provide reasonable estimates of the twanost dominant contribution to the total execution time of a
parameters. Model 2, which attempts to include effects dusimulation, and a trick is clearly needed to calculate the com-
to chain stretching close to the core, has improved the modgllex exponentials in an efficient manner. An obvious choice
estimate of the chain CM radius; however, it has had a detwould be a FFT techniqu&;however, FFT require that the
rimental effect on the radius of gyration estimate. We at-q,'s are positioned on a lattice, and the number of points
tribute this deviation to the fact that the addition of a rigid required to cover the range fromyy,, 0 Qpax IS Ng
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=0max/Amin, €ven though the cost of evaluating each of theThe first term is a harmonic term that determines how large
exponentials is low, a huge number of points is required tgleviations from a perfect logarithmic distribution should be
cover 3—4 decades. We have chosen a hybrid approach @lowed, in order to speed up the evaluation; since the distri-
calculating the complex exponentials directly, using symmebution is on a logarithmic scale, we have to divide by the
try properties to derive them, while keeping t¢s approxi-  local length scale, which is given by the parenthesis and the
mately equidistant on a logarithmic scale. denominator. The constaktshould be chosen so small that

Let us abbreviaterq,=r;,- (g,q) Whereq is a unit vec- the ordering_qm<qn when m<n is_ensur_ed, we hf';\ve used
tor. In the following we will concentrate on calculating k=0-01. This penalty functional is easily minimized by a
exp(—iag,) in the case where exp(aq,) has already been Simulated annealing quench, with moves that shits,
calculated for alm<n. If g, exists such thag, = 2q,,, then which require trigonometric eval_uatlons ingq’s, which can
exp(—iaq,) =exp(iagy)? (the double angle formulassince b€ evaluated by simple algebraic operations on known num-
we have previously evaluated exgi@q,), we only need to bers. IfNg is huge, care must be taken to avoid truncation
square that number. g, exists such that,=dm+d, errors in the evaluation. In our implementation only about
then exp(-iag,)=exp(-iagyexp(-iaqy) (the addition for- 10% of the complex exponentials need to be evaluated di-
mulag, since both exponentials have previously been evaluf€ctly-
ated, we only need to calculate the product of two numbers.1 43S ped ech 605 (1993

i iatri i K. Mortensen and J. S. Pedersen, Macromolec! 5 (1 .

Thus by an advantageous. choice of thpdlstrlbut'lon, we . 2G. A. McConnell, A. P. Gast, J. S. Huang, and S. D. Smith, Phys. Rev.
can use symmetry properties to convert many trigonometric | ey 71, 2102(1993.
evaluations into simple products of known complex num- 3w. M. Gelbart and A. Ben-Shaul, J. Phys. Chet@0, 13169(1996.
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Block copolymer micelle coronas as quasi
two-dimensional dilute/semi-dilute polymer
solutions

Carsten Svaneborg and Jan Skov Pedersen*

Condensed Matter Physics and Chemistry Department, Risg national Labora-
tory, DK-4000 Roskilde, Denmark

*Present address: Department of Chemistry, University of Aarhus, Langelands-
gade 140, DK-8000 Aarhus C, Denmark

Chain-chain interactions in a corona of polymers tethered to a spherical core under
good solvent conditions are studied using Monte Carlo simulations. The total scatter-
ing function of the corona as well as different partial contributions are sampled. By
combining the different contributions in a self-consistent approach it is demonstrated
that the corona can be regarded as a quasi two-dimensional polymer solution, with a
concentration dependence analogous to that of an ordinary polymer solution. Scatter-
ing due to the corona profile and density fluctuation correlations are separated in this
approach. The osmotic compressibility is extracted from the latter, and it is shown to
be a universal function of surface coverage, with some deviations at high coverage due
to surface curvature effects.

This paper has been accepted by Physical Review E as an Rapid
Communication.
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Polymers can be tethered to a surface, thus forming a diffuse layer on the
surface |1, 2]. The equilibrium properties of such a layer follow from the balance
between entropic forces and excluded volume interactions. The latter favor a
state with a minimum of monomer-monomer contacts, which can be achieved
by increasing the available volume per chain by increasing the layer thickness.
Entropic forces will tend to maximize the number of available chain configura-
tions by opposing the chain stretching and by shifting the corona away from the
surface to some extent. At low surface coverage the surface interaction will dom-
inate, and the polymers will have a mushroom like shape. At very high surface
coverage excluded volume interactions and chain-chain interactions dominate
and chains will be strongly stretched forming a polymeric brush [3, 4]. Between
the mushroom and brush regime there is a broad region of intermediate sur-
face coverages [5], which is the typical regime accessible by experiments, see e.g.
[6, 7].

In the present work we study the scattering from the polymeric layer of a
spherical particle such as the polymer corona of a diblock copolymer micelle.
We use Monte Carlo (MC) simulation-generated data to show that a model in
which the the corona is regarded as a two-dimentional solution is applicable.
The total corona scattering can be decomposed in two ways. In the analytical
model of Pedersen and Gerstenberg [8], the intra-chain and inter-chain scat-
tering contributions are combined to give the corona scattering, however, the
same result can be obtained by combining the scattering contribution due to
the average corona profile and density fluctuation correlations [9]. The latter de-
composition can be interpreteted as being the scattering expected from a thin
layer of dilute/semi-dilute solution confined to a thin layer around the core [10].
The approach presented in the present paper is based on self-consistent analysis
of the MC results using the expressions provided by these two decompositions.
The total corona scattering as well as the intra-chain, inter-chain, and corona
profile scattering contributions were sampled during the simulations. The ef-
fects of excluded volume interactions, core expulsion, and chain semi-flexibility
on the scattering was simulated and series of simulations varying the number of
chains, chain length, and core radius were performed. In the analysis of the two
expressions a Random Phase Approximation (RPA) was used for the fluctuation
scattering contribution, and excellent agreement was obtained when inserting
the partial scattering contributions as obtained from MC simulations. The ex-
cellent agreement of the two expressions enables us to extract the scattering
contribution due to density fluctuation correlations within the corona. These
carry thermodynamic information about the apparent second virial coefficient
and the osmotic compressibility of the polymer layer. These quantities show
a surface coverage dependence analogous to that expected from an ordinary
polymer solution.

Numerous approaches such as self-consistent field theory [27, 28|, variational
techniques [29], and numerical simulations [13, 14] have all been applied for
investigating the profiles of brushes on curved interfaces. Polymer layers at low
and medium surface coverages are not amenable to analytically treatment, due
to the presence of large density fluctuations. However, the small-angle scattering
from a polymeric interface depends not only on the profile but also on the
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correlations of density fluctuations [9]. The scattering from a dilute or semi-
dilute solution of star polymers were treated by Marques et al. using an empirical
‘blob’ approach [16]. Our approach offers a clear quantitative picture of the
interaction effects in micellar coronas, which are based firmly on Monte Carlo
simulation results.

We describe the density of chains in a polymer corona on the surface of a
spherical particle using a reduced surface coverage. Due to the chain entropy,
the center of mass of a chain will be located at approximately a distance R,
from the core surface, where R, is the unperturbed chain radius of gyration.
The effective core surface area is thus 4m(R., + Rg)2, where R, is the core
radius, whereas the cross-sectional area of N chains is ’H'REN. The reduced
surface coverage is given by the ratio of cross-sectional chain area to available
surface area as 0 = NTFRS/[‘IW(RCO + Ry)?]. The reduced surface coverage is a
two-dimensional analogy of the ¢/c* concentration [20, 25| for ordinary polymer
solutions. A surface coverage of unity corresponds to critical overlap, where the
area occupied by an unperturbed chain equals the available surface area per
chain. For ¢ < 1 chains are few and far apart and weakly perturbed by the
presence of other chains, and the scattering is well described by the model of
Pedersen and Gerstenberg [8]. However, in the brush regime (o > 1) the surface
will induce chain ordering perpendicular to the surface as chains are stretched.
The scattering in this regime is expected to be described by a core-shell model
[19]. Experimentally o < 5 is found for copolymer micelles [20, 16, 17].

The normalized corona scattering [Feor (¢ = 0) = 1] consists of two weighted
contributions: an intra-chain contribution F,. and an inter-chain contribution
See as

SE@+ (1= 1) Sula) (8.1

Here ¢ is the magnitude of the scattering vector, and F, is the Fourier trans-
form of the pair-distance distribution between sites on the same chain. The
intra-chain scattering is mainly due to chain connectivity and self-avoidance,
and single-chain properties such as the radius of gyration, the contour length L,
and the Kuhn length b can be determined from it. For a long semi-flexible chain
the Kuhn length is the step length of an equivalent random walk. The inter-chain
scattering S, is the Fourier transform of the pair-distance distribution between
sites on different chains. The inter-chain scattering contains information about
the corona profile, and the radius of the core. However, it also includes corre-
lations due to chain-chain interactions such as the ‘correlation hole’, which is
known to be present in ordinary polymer solutions [20, 25].

Core-shell models [19] describe the corona scattering in terms of the config-
urationally averaged profile, and as a result all density fluctuation correlations
due to chain connectivity, self-avoidance, and chain-chain interactions are ne-
glected. The core-shell approximation is Fp,, = A2, where the profile scattering
is given by Acor(q) = [° f(r)sin(gr)/(gr)4nr?dr, and where f(r) is the corona
profile. If chain-chain interactions are negligible, different chains will be uncor-
related, and the inter-chain scattering will be given by S.. = A%,,. Chain-chain
interactions will yield an additional contribution to the inter-chain scattering

Fcor (q) =
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due to short-ranged density fluctuation correlations, which will dominate the
inter-chain scattering at high ¢ values. These fluctuations are caused by the re-
pulsive excluded volume interactions between different chains. Based on this we
define an fluctuation scattering contribution F'yjy., leaving only correlations due
to the average profile (given by A?,.). Thus the corona scattering is rewritten
as

FSOZ(Q) N N cor(q)' (82)

The weighting ensures that F, is normalized for ¢ = 0 since Fyj,. is not
normalized. Rewriting (1) as (2) has the effect of shifting the influence of the
correlation hole from S, into Fyj,.. Therefore, inter-chain correlations has to be
included in an expression for the Fy;,.(q) term. We apply an expression based
on the PRISM theory for polymer solutions and melts, see e.g. [23]:

_ Fl(9

1 — pe(q)Fe(a)

Here ¢(q) is the Fourier transform of the direct correlation function between
sites on different chains in an equivalent site approximation, which depends
on the site-site interaction potential, and p is the density of scattering sites.
The F;, expression has the interpretation as being the scattering of a dilute or
semi-dilute solution with a profile f(r), and will be called solution scattering.

We use Monte Carlo (MC) simulation results for comparing F,o and Fy,.
The micelle was modelled as a number of semi-flexible chains tethered to a
spherical core. Interactions were included by placing six hard spheres of radius
0.16 per Kuhn length b of the chains as this reproduces the excluded volume
effects found experimentally for polystyrene in a good solvent [24]. Chains were
excluded from the core region. The MC moves consisted of pivoting the chain
tails [25], and two moves, that moved and reorientated chains on the core sur-
face. We note that chains are not free to move about on the surface of a micelle
with a glassy or crystalline core. However, the observed scattering is an ensem-
ble average of all allowed corona configurations, and this includes an average
over the location of the chain tethering points, which requires a surface move.
The configurational ensemble averages of the F., S.., and Ay scattering con-
tributions were simultaneously sampled during the MC simulations [26]. The
unperturbed chain radius of gyration was obtained from a separate set of simu-
lations of a single chain. We chose a reference micelle defined as having N = 44
chains, chain length L = 8.33b, and core radius R., = 3.33b, this choice mimics a
Pluronic P85 micelle [8]. We performed three series of simulations, where one of
the three parameters was varied in turn, while keeping the remaining two fixed
at their reference values. The range of variation was chosen to correspond to a
variation of surface coverage o in the range from 0.01 to about five, thus cover-
ing the experimental regime ranging from isolated chains to a reasonable chain
overlap. It should be noted that the equilibrium corona configuration does not
only depend on the reduced surface coverage but also on the surface curvature
R,/R., and number of chains N.

1 Frue(g =0
= Frue(a) + (1= Tt =00)

Fiiue(q) (8.3)
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Comparing (8.1), (8.2), and (8.3) for the sampled scattering contributions
allows us to obtain the —pc(q) term from the simulation results. We found that it
has a weak dependence on ¢, and as a result we approximate it with an effective
excluded volume parameter v(0) = —pc(g). This converts the PRISM expression
(8.3) into the form of a Random Phase Approximation. The excluded volume
parameter is related to a virial expansion of the reduced osmotic compressibility
as v(0) = 2450 + 34302 + ... = 245(0)o where Ay(0) is the reduced apparent
second virial coefficient [28]. A, oscillates around zero, and we have determined
v(o) from the first zero point of Ao .

The sampled corona scattering from simulations varying the number of
chains is shown in fig. 1 normalized such that they coincide for large ¢ values.
The huge increase in oscillations as the number of chains increases is caused
by the change in weighting between the highly oscillatory inter-chain contribu-
tion, and the non-oscillatory intra-chain contribution. Also shown in fig. 77 is
the solution scattering. The two sets of curves show an excellent match, which
demonstrates the self-consistency of our model of the corona scattering. Simi-
lar excellent agreement is obtained for simulations varying length of chains and
core radius (not shown). Finally, the fluctuation scattering contribution Ffy,. is
shown. This contribution is seen to decrease with increasing surface coverage,
analogous to the concentration dependence of the scattering from a polymer
solution, see e.g. [28]. The corona scattering is dominated by profile scattering
at low g values, whereas the fluctuation scattering dominates at large ¢ values.

A fluctuation-dissipation theorem relates the Fourier transform of the den-
sity fluctuation correlation function to the osmotic compressibility [20]. The
reduced osmotic compressibility is given by x = ‘95}: = Fruclqg = 0) ! =
1 + 2As(0)o where the reduced osmotic pressure is I1* = ﬂREH/(ka). In this
expression II,ky, and T are the osmotic compressibility, Boltzmann constant,
and temperature, respectively. Fig. 2 shows the reduced osmotic compressibil-
ity obtained from simulations varying number of chains, chain length, and core
radius, and the points fall on an universal curve as function of surface cover-
age. Similar behaviour have been predicted for polymers at flat interfaces by
Carignano and Szleifer for IT* [5] for o < 6. The osmotic compressibility shows
a weak dependence of surface coverage for ¢ < 1, as one would expect from
the dilute polymer solution analogy, see e.g. [25]. The insert of fig. 2 shows the
apparent second virial coefficient. The values from the three series of simula-
tions approximately collapse onto a common power law relation: As(o)o = ao?
with @ = 0.68 + 0.01 and 8 = 0.95 4+ 0.02. PRISM theory in the thread limit
[23] predicts that As(c/c*) is a constant for low concentrations. We observe a
weak dependence on surface coverage in the range of surface coverages we have
simulated. At high surface coverages the deviations from power law behaviour
observed in the insert of fig. 2 is reflected in the compressibility. We attribute
these deviations to effects of chain stretching, which shows some dependence on
the surface curvature.

In this paper we have demonstrated that the scattering from a corona of
chains tethered to a spherical core for experimentally relevant surface coverages
can be self-consistently re-expressed as the scattering one would expect from
a quasi two-dimensional dilute/semi-dilute polymer solution confined to a thin
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layer on the core surface. We note that the radius of gyration as well as the
correlation length are comparable to the corona thickness, which is why the
polymer layer can be regarded as being quasi two-dimensional. In the brush limit
the chains will be aligned perpendicular to the surface. This is clearly far from
the case of a semi-dilute solution, and we expect the RPA expression to break
down in this limit. It should be noted that we do not observe any deviations
between the corona scattering and the solution scattering even for the largest
surface coverages simulated. The expression we have proposed for the solution
scattering bridges the gap between the model of Pedersen and Gerstenberg, valid
at low surface coverage, and the core-shell models expected to be valid at very
high surface coverage, while retaining formal similarities with both models.

We have also demonstrated that the scattering contributions due to the
corona profile and fluctuations decouple, allowing us to deduce the osmotic
compressibility of the corona from the density fluctuation correlation function.
The compressibility shows a universal dependence on surface coverage analogous
to that observed for ordinary polymer solutions as function of concentration.
We furthermore expect similar expressions to be valid for the scattering from
micelles with elliptical and cylindrical cores, however, with some deviations due
to the variation of the local surface curvature for such geometrical shapes. The
model, we have presented, can be used for separating corona profile and chain-
chain correlation information in real experiments, and thus allows more detailed
information to be gained by analysis of experimental data.
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Figure 1: Comparison between corona scattering F.,. and solution profile
scattering Fio pros for micelles with number of chains: N = 3,8,22,44,87,131
(bottom to top). Feor (thick line), Fioprop (full boxes), and the fluctuation
scattering Ffjy. (thin dashed line). These are normalised such that the single
chain scattering coincides in the large ¢ limit.
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Figure 2: The reduced osmotic compressibility x plotted against surface cov-
erage for simulations varying number of chains (circle), varying chain length
(box), and varying core radius (diamond). The insert shows the Ay(o)o plot-
ted against surface coverage. The line in the insert is the power law As(o)o =
0.6750%% and the corresponding osmotic compressibility is shown as a line in
the figure.
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Form factors of block copolymer micelles with
excluded volume interactions of the corona chains
determined by Monte Carlo simulations

Carsten Svaneborg and Jan Skov Pedersen*

Condensed Matter Physics and Chemistry Department, Risg national Labora-
tory, DK-4000 Roskilde, Denmark

*Present address: Department of Chemistry, University of Aarhus, Langelands-
gade 140, DK-8000 Aarhus C, Denmark

The scattering of a diblock-copolymer micelle has been simulated using Monte
Carlo techniques. The scattering is analysed using a novel model, where the corona
is represented as a dilute/semi-dilute polymer solution with a radial profile. This ap-
proach decouples the scattering due to interaction and connectivity induced density
fluctuations and the average radial profile of the corona. Three different profiles have
been used to fit the simulated corona scattering: a box with a Gaussian tail, and two
maximum entropy (ME) profiles; chain penetration into the core region is not allowed
for any of the profiles. Excellent fits are obtained, especially for a ME profile with
three parameters. An excluded volume parameter and the corona compressibility are
obtained, and show a strong dependence on surface coverage. The derived expressions
for the form factor provides a new approach for analyzing experimental data obtained
by neutron or x-ray small-angle scattering for block copolymer micelles with significant
intra and inter-chain excluded volume interactions interactions.

This paper has been submitted to Macromolecules.
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9.1 Introduction

When a diblock copolymer is dissolved in a solvent which is good of one block
and bad for the other block, micelles are spontaneously formed. These micelles
have a relatively dense core of the insoluble blocks surrounded by a diffuse corona
consisting of the solvated blocks. The core can have various geometric shapes
such as spherical, elliptical, or cylindrical, depending on solvent and the length
of the polymer blocks [1|. Such micelles provide a model system for studying
the interactions between polymer chains tethered to a curved surface [2][3].

Much work have been invested in understanding properties of such systems,
as tethering polymers to a surface provide a way of modifying the physical,
chemical, and biological properties of surfaces [4][5]. There are numerous studies
in the literature of polymers tethered to a flat interface forming a polymer layer,
see e.g. [6][7][8][9]. For chains tethered to a convex surfaces such as a sphere
the available volume per chain segment will grow rapidly along the chain as
segments moves away from the surface, and this has a strong effect on the
properties of the polymer layer. The profiles of brushes on convex surface have
been examined using variational minimisation of mean field theory [10], self-
consistent field theory [11][12][2][3], and simulation techniques such as Monte
Carlo and Molecular Dynamics simulations [13][14].

Under good solvent conditions a reduced surface coverage of a flat polymer
layer can be defined as 0 = FRZO/A’, where R, is the radius of gyration of
an unperturbed polymer chain, and A’ is the surface area available per chain
(the inverse grafting density). For o < 1 (the mushroom regime) all chains are
essentially isolated. The polymer layer will be laterally inhomogeneous, and the
conformation of a single polymer chain depends only on self-interactions and
the presence of the surface. The profile of a polymer layer has recently been
investigated by renormalization group calculation [15] in the low coverage limit.
For o > 1 (the brush regime) each chain will interact with many neighbouring
chains, and chains will stretch away from the surface in an attempt to reduce the
excluded volume energy contribution by a reduction of the monomer density,
which is achieved by increasing the height of the polymer layer. However, chain
stretching will be accompanied by a decrease in the configurational entropy
caused by the reduction of the number of possible chain configurations. The
height of the polymer layer is determined by the balance of these two effects.
In the brush regime the layer will be laterally homogeneous, and the chain
stretching will be uniform except at the outer edge of the layer, where there will
be some fluctuations due to the increased degrees of freedom of the chain ends
[10].

For a spherical micellar core we define specifically the reduced surface cov-
erage as

NT(RZO
o= :
47 (Reo + Rygo)?
Here Ry, is the unperturbed radius of gyration of the chains, while R, is

the core radius, and N is the number of chains. The reduced surface coverage is
the packing fraction of chains on the surface, assuming that chains are spherical

(9.1)
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objects on the surface of the core. Due to the non-penetration of the chains into
the core region the center-of-mass of a chain is displaced a distance about Ry,
from the core surface yielding an effective surface area per chain of 47 (R, +
Ry0)?/N, while the cross-sectional area of a chains is WRSO.

The topic of the present article is to present results from computer simula-
tions for the scattering from micelles as well as an analysis of the results by a
novel semi-empirical model. The model is a generalization of core-shell models
that takes the scattering due to density fluctuation correlations into account.
The model allows the radial profile, chain radius of gyration, and the corona
osmotic compressibility to be obtained from micellar scattering data.

We have performed simulations of the scattering for surface coverages o < 5,
which correspond to the region of surface coverages experimentally available for
copolymer micelles, see e.g. [2|[16][17]. The computer simulations have been
performed using semi-flexible chains with excluded volume interactions, where
chains are excluded from the spherical core region. Monte Carlo simulation
techniques (MC) allow us to sample the scattering contributions from the micelle
just as in a real experiment using contrast variation techniques, but using a well-
defined model for the scattering object, here a micelle. This allows us to test
models for the scattering from complex objects using simulation results, and
it allows us to correlate the observed scattering to properties of the simulated
model system, which will improve the interpretation of experimental scattering
data. The simulation results are analysed using a semi-empirical model, which
combines expressions for the scattering from a core-shell model with that of
a dilute/semi-dilute polymer solution; a similar model have been used by de
Gennes for describing the dynamics of brushes at flat interfaces [18][19]. We
have used three radial profiles for describing the average radial profile, a box
with a Gaussian tail, and two Maximum Entropy profiles [20][21][22], where
knowledge of the two or three first momenta of the profile is assumed.

The paper is organised as follows: In section 2 we present a derivation of
the model, section 3 presents the Monte Carlo simulations, and the quantities
that are sampled during the MC simulations. In section 4 our MC results are
presented and discussed, while section 5 contains our analysis and modelling of
the data, and our conclusions are summarised in section 6.

9.2 Analytical Models

In a dilute polymer solution polymers are well separated, and as a result the
conformation and position of different polymer chains are uncorrelated. The
scattering from the solution is given by the single chain form factor, which for
an ideal flexible chain is given by Fpepe(z) = 2[z — 1 + exp(—z)]/z* with
T = (ng)Q, where R, is the radius of gyration, and ¢ the magnitude of the
scattering vector [23]. For qR, > 1 the form factor follows a (qR,)™% power
law; this is a reflection of the < Rfj > |i — j| scaling relation between the root-
mean-square (RMS) distance between two sites on the chain and the contour
length of the chain segments connecting the two sites. Topologically the ideal
chain is a connected string-like object with a fractal dimension of two, while
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actual polymer chains are multi-fractals due to their finite size and the semi-
flexibility of the polymer backbone.

The reduced density for a polymer solution is defined as 3 = 47ngop/3
(identical to the reduced overlap concentration ¢/c*, where ¢* is the overlap
concentration of a polymer solution), and p is the number density of chains. If
the reduced density is well below unity, the solution is dilute, and polymers are
well separated. If the reduced density is well above unity, the solution is in the
semi-dilute regime, where polymers are entangled, forming a transient network
of intermeshed chains [24]|25]. Using a discrete model with n sites per chain,
the scattering from a semi-dilute solution follows the predictions from PRISM
theory [26][27], which states that it depends on the single chain scattering and
a direct inter-chain correlation function ¢(q) as

Fprrsm(q) = 1= nif(Z);J;(qu)bye(q)- (9.2)

Here we have neglected the effects of self-avoidance and we do therefore
not consider the screening at higher concentrations. Let us assume that the
di rect correlation function can be approximated by its low ¢ limit, then —noc(q)
can be approximated by an effective concentration dependent excluded volume
interaction parameter v(X)[27]. This turns the PRISM expression into the form
of a Random Phase Approximation (RPA) [28]. Defining the reduced surface
compressibility as k = 9I1* /0%, where the reduced osmotic pressure is IT* =
47rRSH/(3ka) (I1* = wREH/(ka) in the case of a two-dimensional system
of tethered chains to a surface). Here II, ky, and T are the osmotic pressure,
Boltzmann constant, and absolute temperature, respectively. The RPA excluded
volume interaction parameter can be related to a virial expansion of the reduced
osmotic compressibility as k = 1 + 2428 + 34352 +... = 1 +243(2)X = 1 + v,
where the A9(X) = As + 343%/2 + ... function defines the apparent second
virial coefficient [28]. In the dilute limit the RPA expression reduces to the form
factor of an ideal chain, while in the ¢ — 0 limit the inverse forward scattering
is Fg;A(q = 0) = 1 + v = k which is expected from a fluctuation dissipation
theorem.

A block copolymer micelle consists of a diffuse corona of the dissolved block
and a dense core of the insoluable block. The normalised form factor [Ficerie(q =
0) = 1] of a block copolymer micelle with a homogeneous spherical core can be
written in terms of partial scattering contributions as

Fmicelle(Q) = m [Bf(}-?(q) + /BCQOTFCOT'(Q) + 2ﬁsﬂcorAcor(Q)¢'(Q)] )
(9.3)

where the three contributions correspond to scattering from the core, the corona,
and an interference term between the core and the corona, respectively. The
corona and core excess scattering lengths are denoted (. and (3, respectively,
and they are defined as Beor = NVegrApchain and B = NViApeore, where Vg,
Vs, Apchain, and Apeore are the volume of a corona and core block, the excess
scattering length densities of a corona block, and core block, respectively. A
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diblock copolymer micelle has implicitly been assumed, such that N denotes the
aggregation number. In this paper the corona, core and corona-core interference
contributions to the micelle scattering are normalised to unity in the ¢ — 0
limit. The normalised form factor amplitude of a sphere is given by Rayleigh as
®(qReo) = 3[sin(qReo) — qReo cos(qReo)]/(qReo)?, where R, is the radius of the
micelle core [29].

Because the core is assumed to be spherical and homogeneous, A, only
depends on the radial distribution of segments ¢(r), i.e. the corona profile, and
Acor will in the rest of the paper be denoted profile scattering. It is given by

Acor(q) = /OOO drdnr? Sinq(fr)go(r). (9.4)

If the single chain scattering contribution is neglected as well as correlations
due to density fluctuations caused by chain-chain interactions, the corona scat-
tering is given by F,, = A2,.. This is the approximation that yields a core-shell
model of the micellar scattering|30], which is the scattering from a configura-
tionally averaged micelle, rather than the configurationally averaged scattering
from a micelle, which is the scattering observed experimentally. As single chain
scattering is neglected, a core-shell model is unable to reproduce the character-
istic single chain power law decay at large ¢ values, which is a signature of the
chain connectivity, nor is a core-shell model able to represent the finite scatter-
ing observed in the minima where Agy.(¢) = 0. Only in the limit o > 1 where
the density of chains is very high, e.g. when the corona is in the brush regime, do
we expect these fluctuations to be sufficiently suppressed for core-shell models
to give a reasonable description.

For a micelle the corona scattering is the sum of two contributions: a con-
tribution from the intra-chain scattering F'(q) (proportional to the number of
chains N), and inter-chain scattering H(q) (proportional to the number of dif-
ferent pairs of chains N(N — 1)). The normalised [Fi,r(¢ = 0) = 1| corona
scattering is thus given by

Fr() = T\ X2 L), (9.5

The separation of the corona scattering into inter-chain and intra-chain
scattering contributions is somewhat arbitrary. Another way of separating the
corona scattering is in terms of the scattering from the configurationally aver-
aged radial profile, and from the correlations of the density fluctuations [31][32]
about this average profile. The scattering due to the radial profile is given by
A2, as in a core-shell model. The density fluctuation correlation function de-
pends on chain interactions and chain connectivity, and we model this by the
scattering from a two dimensional dilute/semi-dilute solution using the RPA
approximation:

Frpalq) | N —Frpa(g=0
Fsol.prof(Q) = N( ) + N ( )AEOT(Q)' (96)

Here the weighting of the two terms has been adjusted to account for the fact
that scattering have been shifted from the profile scattering contribution into the
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fluctuation scattering contribution, and the fluctuation scattering contribution
is not normalized. This expression for the corona scattering has separated the
total scattering into a term that only depend on the scattering from a single
chain and an excluded volume parameter, and a term that only depends on
the radial profile of the corona, and can be interpreted as being the scattering
one would observed from a polymer solution with a particular radial profile
being confined to the micellar surface. The first term is denoted the fluctuation
scattering in the rest of this paper, while the second term is denoted profile
scattering.

9.3 Monte Carlo Simulation

We have performed Monte Carlo (MC) simulations on block copolymer micelles
[33]. Micelles was modeled as a spherical core with a number N of semi-flexible
chains tethered to it, where each chain consists of n bonds of length [y. The
valence angle between segments was fixed at 135.585 degrees, which yielded a
Kuhn length b = 6lp such that the semi-flexible chain reproduces the radius
of gyration of a flexible chain in the long chain limit. The excluded volume
interaction was simulated by placing six hard spheres along each Kuhn length
of the chain. The radius of the hard spheres was fixed at 0.1b, which is known
to reproduce the binary cluster integral of polystyrene in a good solvent [35].
The MC moves consisted of pivoting the individual chains [36], and two surface
MC moves, that moved and reorientated chains on the micelle surface. These
were performed by pivoting the entire chain about the core center or the tether
vertex, respectively. Configurations where a chain was found to overlap with
other chains or the core region were rejected. We used the “zippering” algorithm
[37] when checking for chain overlap, taking into account the semi-flexibility
of the chains, and taking care to avoid introducing local stiffness by allowing
neighbouring vertices along the chain to overlap. The initial micelle configuration
was constructed using slightly stretched chains, which were grown while avoiding
overlaps. This initially biased configuration was equilibrated by performing MC
moves until the number of accepted moves was in excess of one hundred times
the number of degrees of freedom in the model. The three parameters controlling
the step size of the MC moves were adjusted during the equilibration stage to
yield approximately 50% acceptance probability for each of the three moves.
The chain was periodically reconstructed after every 50000 pivot moves us-
ing the tabulated dihedral angles to avoid the build up of numerical errors due
to the many repeated rotations needed to sample the micellar configurations
space. This was made possible because each chain carries a virtual zeroth seg-
ment around with it, and the zeroth segment and the first segment, define a
coordinate system in which it is easy to add another segment with a specific di-
hedral angle, valence angle, and segment length. This procedure, when iterated,
uniquely reconstructs the chain based on a table of dihedral angles, a table which
was created during chain formation, and which was updated each time a pivot
move was accepted. This is a cheap and effective operation compared to solving
3 linear equations for each segment as in the chain correction algorithm of Stell-
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man and Gans [36], and also provides an easy way of creating the initial chain
configuration. The deviation between the actual and expected dihedral angle
was constantly below 3 x 10~ !? during the simulation of the longest chain (229
segments), with deviations in segment length and valance angle below about a
third of that. During a MC simulation the configuration was sampled for ev-
ery 1000 attempted MC steps, and a simulation consisted of 100 blocks, each
block being the average of 100 samples. Error bars was derived by analysing the
fluctuations of the block averages.

During MC simulations the radial density profiles ¢(R;) were sampled in
a number of bins at radii R; as the number of vertices lying in a spherical
shell centered on the core with outer radius (R; + R;+1)/2 and inner radius
(Rj—1 + R;)/2. Each bin was normalised by the volume of that spherical shell.
We sampled the radius of gyration of the individual chains defined as

n+1

N n+1
RZ < n+1)N ZZ emyi — Tik) > with  Rem,; = Zrzk, (9.7)

where r;j is the position of the k’th vertex on the i’th chain. IV is the number of
chains and n + 1 is the number of vertices/scattering sites. The scattering from
the micelle corona is given by the scattering from the set of vertices and core as

> , (9.8)
1 n+1

Aila) = gy 2.4 (9.9)

2

Fmicelle(Q) X <

N
/Bcor Z Ai + ﬁsq)
i

where the form factor amplitude of the ¢’th chain is

Since the micelle core is assumed to be spherical and homogeneous, the core
form factor amplitude @ is real and can be moved outside the configurational and
orientational average. The remaining configurational averages can be compared
to the corresponding terms in (9.3). The normalised corona scattering and the
profile scattering can be identified as

> ) (9.10)

N
Acor(q) = % <ReZAZ-> : (9.11)

In this notation the single chain scattering and inter-chain scattering can be
written as the sum of diagonal and off-diagonal members of (9.10) as:

and

N
_ % <Z|Ai|2> and H(q) = N( <2A A*> (9.12)

iZ£]
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Comparing these equations to (9.10) demonstrates the weighting used in the
expression for corona scattering (9.5). The averages consist of a configurational
as well as a orientational average. These were performed using MC sampling, and
by evaluation of the scattering for 13 directions for each ¢ value, and choosing a
new set of random directions each time a block of 100 samples was completed.
The set of g values were chosen as approximately logarithmic distributed, but
slightly tweaked such that many ¢ values are the sum of two smaller ¢ values, or
twice another ¢ value. This converted many of the complex exponentials needed
to evaluate (9.9) into simple products and squares of previously calculated com-
plex numbers. This method of sampling yields a significant optimisation of the
sampling of micellar scattering |33].

9.4 Results and Discussion

We have chosen a reference micelle defines as having N = 44 chains, chain
length L = 8.33b, and core radius R, = 3.33b, as this mimics the configuration
of the Pluroic P85 micelles [106]. We use the Kuhn length b as a length scale.
We have performed three series of simulations where one of the parameters IV,
L, and R., was varied while keeping the remaining two fixed at their reference
values. The range of variation was chosen to correspond to a variation of surface
coverage in the range from 0.01 to five, covering the experimentally accessible
regime for copolymer micelles [2][16][17].

Figure 1 shows the corona scattering for simulations where the number of
chains is varied. A qualitative examination shows a huge decrease of scattering
at high ¢ values relative to the scattering at low ¢ values as the number of chains
is increased, while the amplitude of the first subsidiary oscillation increases and
higher-order oscillations progressively become more pronounced. This is caused
by the weighting between the highly oscillatory inter-chain scattering H(q), and
the non-oscillatory intra-chain scattering F'(q). The scattering is dominated by
single chain scattering and its 1/N dependence at high ¢ values, while the rapidly
decaying profile scattering contribution dominates at low ¢ values. The minima
of the corona scattering correspond to g values where Ay (¢q) = 0, and in those
minima the scattering intensity is given solely by the chain scattering F'.

Figure 2 shows the corona scattering corresponding to simulations where the
core radius is decreased for fixed number of chains and core radius. Decreasing
the core radius, causes the oscillations due to the radial profile to shift towards
larger ¢ values. Simultaneously the oscillations are reduced as the inter-chain
scattering becomes progressively less dominant compared to the chain scattering
F(q), which is essentially unchanged by a decrease in core radius.

The logarithm of the absolute value of the profile scattering is shown in
figures 3 and 4. Each sign change gives rise to an inverted peak due to the log-
arithm. A qualitative examination shows that increasing the number of chains
has only a slight effect on the profile scattering i.e. the corona profile, as the
first inverted peaks are shifted slightly towards smaller ¢ values indicating a
slight increase of the corona width. As the core radius is decreased a huge shift
is seen in the shift of the oscillations towards larger g values shown in figure
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4, which indicates that varying core radius has a large impact on the corona
profile. Simulations where the chain length is increased will display similar ef-
fects as those where the core radius is decreased, as this provides two opposite
mechanisms of controlling the surface curvature, which can be quantified by the
dimensionless ratio of the radius of gyration to core radius. A broadening of
the first subsidiary and second subsidiary oscillation is observed in figure 3 and
4, and this is attributed to effects of surface coverage and surface curvature,
respectively, on the shape of the corona profile.

Figure 5 shows the reduced density profiles sampled during the simulations,
where the number of chains, or core radius was varied. Simulations varying the
chain length yields the same reduced density profile as simulations varying the
core radius, as these simultaneously varies the surface coverage and curvature in
a similar manner. The reduced density profiles are defined as ¢'(r') = p(r')/C
where C' = [ (r')dr' is an area normalisation constant, and the reduced radius
is defined as 1’ = (r — Reo)/((r) — Reo), where (r) = [ro(r) 4nr?dr is the first
moment of the simulated profile. This representation shows the change of the
profile shape rather than the change of the profile itself.

At low surface coverage all profiles indicate a depletion zone close to the
core, however, no depletion zone is present when the surface coverage is in-
creased above unity. At sufficiently large surface curvatures the ¢(r) oc r—4/3
scaling behaviour predicted by Halperin [24] is clearly observed in the vicinity
of the core surface, however, further away from the core the radial profiles decay
faster than predicted by Halperin, which is due to the finite length of the sim-
ulated chains. Upon variation of the number of chains, the profile only shows
a dependence on the number of chains for surface coverages above unity, indi-
cating that chain interactions are negligible for surface coverages below unity.
The profile for simulations where the chain length is varied shows a large change
of shape. This is due to the fact that the effective surface curvature Ry/R,, is
simultaneously increased.

9.5 Analysis and modelling of the results

For a quantitative analysis of the simulated chain scattering, two parameters
are required for the chain scattering, namely the radius of gyration R, , and
the excluded volume parameter in the RPA expression, which is assumed to be
a function of the surface coverage v(o). We have assumed that the excluded
volume coefficient only depends on the reduced surface coverage, in analogy
with an ordinary polymer solution where it is a function of the reduced density
Y as shown in the theory section. We have simulated semi-flexible chains, as this
provides a relatively realistic model for real polymer chains. The simple RPA
expression is modified using a Daniels form factor in the denominator [55], which
takes the semi-flexibility of the chains into account in an approximate manner,
while we retain the Debye form factor in the numerator of the RPA expression.
Simulations have shown, that this provides a quite accurate expression for the
scattering from semi-dilute solutions of semi-flexible polymers [40]. The full
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expression for the fluctuation scattering contribution is

P°Rj

. ( i ) B FDanielS (m) (9 ].3)
RPA\Qltg) = 1+1/(O’)FDebye(q2R§)’ |

— b -1 -1\ —=x
Fpaniets(r) = FDebye(iU) + 5L (4 +7x " — (11 4+ 7z e ) ,

Fpepye(z) = 2o =1 +26Xp(—x)]’

X
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Here e(n) is a correction to the radius of gyration of the Daniels expression
due to the finite number of statistically independent segments in our simulations
[41]. The profile scattering A, is the Fourier transform of the radial profile, and
requires an expression for the radial monomer profile (7). To our knowledge, no
theoretical expressions exist for the radial density profiles of spherical micelles
in the low to medium coverage limit, which we explore in the present paper.
As a result we use three empirical profiles, all of which are generalisations of a
Gaussian distribution.

The first profile we use is a box with a Gaussian tail, abbreviated BoxGauss
profile, which is defined as follows

0 r < Re
QO(T) = B Reo <r <R
Bexp [—(r — Rch)Q/(QSQ)] Ry, <r

Here B~! = [ ¢(r)4nr2dr is a normalisation constant, R, is the outer edge
of the box, and s defines the length scale on which the Gaussian tail decays.
The normalised scattering from this profile is given by:

Sg(qa S, Rch) + V(Rch)@(chh) - V(Rco)q)(cho)
Vo + V(Ren) — V(Reo) .

ACOT‘(QasaRCh) = (914)

Here ®(gR) is the normalised form factor amplitude for a homogeneous
sphere with a volume V(R) = 47 R*/3. And the normalised scattering contribu-
tion of the half-Gaussian is

Se(q,s,7) = {qr (47’3 +V2r(r? + 32)) }71 X

(gs)?
2

{2rs sin(qr) + V27 exp(— ) (qrs2 cos(qr) + r? sin(qr))
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qs

+2v2D 7] (* cos(gr) — grssin(gr)) } ’

while the corresponding volume of the Gaussian profile is
Vyo(s,r) = 2ms (47’3 +V2r(r? + 32))

The Dawson integral is given by D[y] = exp(—y?) [ exp(#?)dt and a numer-
ical expression for this integral is given in Numerical Recipes [46]. An expression
for the scattering from a Gaussian-shaped profile has previously been reported
by H. Bagger-Jorgensen et al. [42], however, the published expression contains
errors.

We also use two maximum entropy (ME) [20][21][22] profiles for analysing
the data. These profiles are based on the assumptions that no chains enter the
micellar core, such that ¢(r) = 0 for r < R.,. We furthermore assume knowledge
of the first two or three momenta of the profile. In general assuming knowledge
of the first m momenta of profile leads to an entropy functional

Slp] = - dranr?e(r) <—K1ngo(r) + Z )\nrn> ,
n=0

where a uniform prior is assumed. Here A, is a set of Lagrange multipliers to
ensure the m+1 constraints of the momenta of the distribution ¢(r). The zeroth
constraint ensures normalisation. Upon variation of the entropy functional it is
seen that the maximum entropy profile can be written as

m(r‘a a )_ 0 ’I“<Rco
P at, .. m) = Bexp[— 351 an(r — Reo)"] 72> Reo

where B is a normalisation constant, and the set of a,’s are related to the
Lagrange multipliers. We take these as fit parameters when fitting the scattering.
For m = 2 the normalised profile scattering produced by this profile, hence
denoted the ME2 profile, can be worked out for as > 0. This yields

ACOT(qaalaQQ) =

40‘3/2 Sin(cho) + 202ﬁR6 {EI‘fC(ZE + Zy) exp(ggQ — yQ)(q + Zb)elc}
V7 (2az + %)qFrfe(z) exp(a?) — 2/az (a1 — 4asReo)q

where b = 2a9Rco—a1, ¢ = 22y—qReo, = a1/(2y/a2),and y = q/(2\/a2). Re{z}
is the real part of the complex number z, and Erfc(z) is the complementary error
function of complex argument; an expression for Erfc(z +iy) exp(z? —y?) is also
given in the appendix. In the limit of R., — R. and a; — 0 both profiles
converges towards a simple Gaussian profile, and the two scattering expressions
(9.14) and (9.15) are identical.

(9.15)
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We have also used a ME profile with m = 3 denoted the ME3 profile.
The profile scattering was obtained by numerical Fourier transformation of the
profile. The profile was represented by 500 piecewise linear segments in the range
from R, to R., + 6R,, and an analytical expression for the Fourier transform
was used for the scattering from each segment.

The corona and profile scattering obtained from the MC simulations using
(9.10) and (9.11) were fitted simultaneously by the corresponding theoretical
expressions (9.6) and (9.4), where we model the fluctuation scattering by (9.13),
and we model the profile by one of the three profiles: box with a Gaussian tail
(abbreviated BoxGauss), and a maximum entropy profile assuming knowledge of
the first two or three momenta (abbreviated ME2 and ME3). The fit parameters
for the fluctuation scattering are the radius of gyration R, and the excluded
volume coefficient v. The fit parameters for the radial profiles are R., and s for
the BoxGauss profile, while the first two or three a, parameters are fitted for
the two ME profiles. The fit range for the profile scattering was ¢gb < 10 and
qgb < 4 for the corona scattering. The latter range is dictated by the fact that
the Daniels expression is not valid for larger values of ¢b, as it fails to reproduce
the rigid rod scattering behaviour observed at large ¢ values.

The results of fitting the model using the three profiles to the simulation
results for the corona scattering and profile scattering are shown in figures 1-4.
For o < 1 all the fits have reduced chi-square value [43] X%ed < 5, except for the
simulations with the shortest chains L = 2b and L = 4b which have a X%ed < 30.
These large values are due to the fact that the Daniels distribution is not valid
for chains with so few statistical segments. In the ¢ < 1 range the ME2 and
ME3 profiles are identical since the a3z parameter is estimated to zero within
the statistical errors for the ME3 profile. For simulations with very large core
radii both ME fits consistently have somewhat smaller X%ed values compared
to the BoxGauss profile fits, however, for simulations with a low aggregation
number, all three profiles provide fits of similar quality. The agreement between
model and simulation data is excellent for surface coverage o < 1 for all three
profiles. However, for ¢ > 1 the fits provided by the ME2 profile are comparable
to those using the BoxGauss profile, while the ME3 profile consistently provides
significantly better fits, where X%ed is reduced by at least an order of magnitude.
This vast improvement can be understood by observing the deviations shown
in the high ¢ part of corona scattering shown in figure 1 and 2 for the largest
surface coverage. These deviations are caused by the inability of the profile in
representing the actual profile scattering, as shown in figure 3 and 4, where
the ME3 profile can be seen to give a much better fit to the profile scattering
compared to the BoxGauss and ME2 profiles.

Profiles obtained by fitting the scattering and profiles sampled during the
simulation are shown in figure 5 and 6. They have been plotted using the scal-
ing transformation of the corresponding simulation profile to avoid introducing
artifacts when comparing the two scaled profiles. For low surface coverages the
fitted profiles are very similar, and show a good agreement with the simulated
profiles. For high surface coverages the ME3 profile give significantly better es-
timates than the two other profiles. These deviations at high surface coverages
are reflected in the deviations in the profile scattering shown in figures 3-4. The
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deviations in the vicinity of the core do not appear to have any effect on the
profile scattering.

For o < 1 fitting the three profiles yields identical estimates of the radius
of gyration and the excluded volume parameter, while for & > 1 significant
deviations are observed between the estimates provided by fitting the three
model expressions. These are caused by the inability of the BoxGauss and ME2
profiles in fitting the sampled profile scattering and corona scattering at high
q values. Both the radius of gyration and the excluded volume parameter are
estimated from the corona scattering at high ¢ values, and as a result of this we
only report the results obtained from the fits using the ME3 profile.

The radius of gyration obtained from the simulations is shown in figure 7.
For the simulations where the surface coverage is increased by increasing the
number of chains or decreasing the core radius show a radius of gyration with a
similar dependence on surface coverage. Radius of gyration estimated by the fits
is also shown, and they are in good agreement with the simulations results with
less than 2% deviation for simulations with a low number of chains or large core
radius. Larger deviations (12% for the highest surface coverage) are apparent
for simulations with long chains.

The insert in Figure 8 shows the v(o) parameters obtained from fits using
the ME3 profile. While this parameter also depends on the surface coverage and
the number of chains, the points from simulations varying number of chains,
core radius, and chain length collapse on the same curve, which shows a power
law dependence on surface coverage. The power law is v(0) = ao? with o =
1.42 £ 0.03 and 8 = 1.04 £ 0.02. The simulations with the shortest chains can
be observed to deviate from this behaviour, which we attribute to the Daniels
form factor not being valid for such short chains. Previously we have analysed
the scattering data using a self-consistent approach [44], where the single chain
scattering, sampled using (9.12) during MC simulations, was used in numerator
and denominator in the RPA expression (9.13). v(0) was derived by equating
(9.5) and (9.6) in the first minima of the profile scattering where S.,(q) = 0,
and a power law behaviour with a = 1.35 £ 0.02 and § = 0.95 4+ 0.02 was
found. This indicates that while v(o) shows a simple power law relation on
o, the corresponding constant and exponent shows a weak dependence on the
particular expressions used for the chain and profile scattering.

The forward scattering due to density fluctuations is related to the osmotic
compressibility  through a fluctuation dissipation theorem, which states that
the osmotic compressibility is inversely proportional to the ¢ — 0 limit of the
Fourier transform of the density fluctuation correlation function. For a polymer
solution the observed scattering is due to density fluctuations, and as a result
it is easy to obtain the osmotic compressibility by extrapolating the observed
scattering to the ¢ — 0 limit. For a micellar corona the scattering at low ¢
values is dominated by profile scattering due to the average radial profile. Thus
the profile scattering dominates the scattering due to the density fluctuations,
making a simple extrapolation impossible, however, by modelling the profile
and fluctuation scattering separately as we have done in this paper is is trivial
to obtain the ¢ — 0 limit of the fluctuation scattering contribution as k(o) =
Frpalg = 0) = 1+ v(o) just as for a polymer solution [24]. The osmotic
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compressibility is shown in figure 8, the osmotic compressibility can be seen to
follow a universal dependence on the surface coverage except for high surface
coverages where deviations due to a dependence on the number of chains and
surface curvature can be seen.

9.6 Conclusions

We have presented Monte Carlo simulation results performed on the scattering
from a micelle as function of number of chains, chain length, and core radius.
We have, furthermore, presented a novel empirical model expressions for the
scattering from block copolymer micelle with a spherical core and that includes
the effects of excluded volume interactions. The corona scattering is represented
as a sum of scattering contributions due to the average radial density profile and
the density fluctuations correlations about this profile. We model the fluctuation
contribution to the scattering as that of a dilute/semi-dilute polymer solution.
The proposed model depends on the radius of gyration, an excluded volume
parameter, which is proportional to the apparent second virial coefficient, and
an expression for the radial profile of the micellar corona. To our knowledge,
there is no theoretical expression available for the radial profile except in the
high curvature limit. We used three empirical expressions for the corona profile,
one with a box with a Gaussian tail and two maximum entropy estimates where
knowledge of the two or three first momenta was assumed. The model expres-
sions for the corona scattering and profile scattering were simultaneously fitted
to the scattering obtained directly from the MC simulations. These fits show an
excellent agreement for low surface coverages o < 1 for all three profiles, while
the ME3 profile shows an excellent agreement also for o > 1, where the Box-
Gauss and the ME2 profile show significant deviations at high ¢ values for the
corona scattering. These deviations are caused by the fact that the BoxGauss
and ME2 profiles provide a poor represention of the actual corona profile. This
is reflected in the estimates of radius of gyration and the excluded volume pa-
rameter by these two models, as these are estimated from the high ¢ behaviour
of the corona scattering where the fluctuation scattering dominates. For o < 1
all profiles provides identical estimates for the radius of gyration and excluded
volume parameter. Besides providing estimates for the radius of gyration and
the excluded volume parameter, the fits also provide estimates for the radial
profile, which can be compared to the actual radial profiles obtained from the
MC simulation.

Profiles obtained by fitting the simulated scattering are in good agreement
with the profiles obtained directly from simulations, except for small deviations
close to the core. For ¢ < 1 the three profiles obtained from the fits of the
simulated scattering are very similar, however, at high surface coverages, the
MES3 profile yields a significantly better estimate for the radial profile.

The fits yields estimates of the radius of gyration which are in good agree-
ment with the radius of gyration obtained directly from simulations. Plotting
the excluded volume parameter against reduced surface coverage for simulations
varying chain length, number of chains and core radius shows that the results
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approximately fall on a common curve corresponding to a power law behaviour.
However, the coefficients and exponents are slightly different from those we have
previously obtained through a self-consistent analysis, where simulation results
for the single chain scattering were used in the RPA expression for the corona
scattering, thus forming a complete self-consistent expression for the corona
scattering. This suggests that the power law behaviour is sensitive to the model
expressions used for fitting the scattering.

We have shown that the effects from chain connectivity and excluded vol-
ume interactions between tethered chains on the scattering of a micelle with a
spherical core can be described by a relatively simple model, where the corona
is modelled as a dilute/semi-dilute solution with a particular radial profile. We
note that this method of including connectivity and excluded volume interac-
tions effects in the scattering from colloidal aggregates can be generalised to
geometries such as micelles with elliptical and cylindrical cores. The models of
the scattering from colloidal aggregates presented in the present paper allows
more accurate and detailed information to be obtained from the analysis of ex-
perimental results. We are currently applying the expressions in the analysis
of small-angle neutron contrast variation data and small-angle x-ray scatter-
ing data for micelles of polystyrene-polyisoprene in decane. The results will be
presented in a future article.
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9.7 Appendix

The real and imaginary parts of G(z,y) = exp(z? — y?)Erfc(xz + dy) can be
separated into real and imaginary parts using an infinite series approximation
[45]

2 .
2_,2 —y? 9 -y
G(z,y) = e "V Erfe(z) — G5 cos(2zy) — 23,5, an(fﬂ,y)
. *92 in(2 2 7ﬁ7y2
+ {—% — =Yl %Wgn(fﬂay) ;
where

fn(z,y) = 2z — 22 cosh(ny) cos(2zy) + n sinh(ny) sin(2zy)
gn(z,y) = 22 cosh(ny) sin(2zy) + n sinh(ny) cos(2zy)

Here Erfc(z) is the real complimentary error function. An expression for it
is given in Numerical Recipes [46]. Evaluation of the two auxiliary functions f,
and g, can be optimised using the addition formulae in which case only cosh(y)
and sinh(y) need to be evaluated, and subsequent evaluations of cosh(ny) and
sinh(ny) require only a few simple arithmetic operations of precalculated con-
stants.
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Figures

Figure 9.1: Corona scattering for simulations varying the number of chains cor-
responding to surface coverages o = 0.016,0.13,0.36,0.72,2.15,and 5.37 (top
to bottom using symbols). Lines are model fits. Dotted line: BoxGauss, dashed
line: ME2, and solid line: ME3 profile.
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Figure 9.2: Corona scattering for simulations varying the core radius correspond-
ing to surface coverages o = 0.13,0.72, and 2.10, respectively (using box, dia-
mond, and plus symbols respectively). Lines are model fits. Dotted line: Box-
Gauss, dashed line: ME2, and solid line: ME3 profile.
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Figure 9.3: Profile scattering for simulations varying the number of chains cor-
responding to surface coverages o = 0.016, o = 0.72 (shifted down one decade),
and o = 5.37 (shifted down two decades). Lines are model fits using BoxGauss
profile (dotted), ME2 profile (dashed line), and ME3 profile (solid line).
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Figure 9.4: Profile scattering for simulations varying the core radius correspond-
ing to surface coverages o = 0.13 (shifted down two decades), o = 0.72 (shifted
down one decade), and o = 2.10. Lines are model fits using BoxGauss profile
(dotted), ME2 profile (dashed line), and ME3 profile (solid line).
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Figure 9.5: Reduced radial density profiles obtained from simulations varying
number of chains (symbols) and profiles obtained by fitting the scattering us-
ing the BoxGauss (dotted lines), ME2 (dashed lines), and ME3 profile (solid
line). The fitted profiles have been transformed using the parameters as for the
simulation profile. Simulation profiles are shown for a number of chains corre-
sponding to surface coverages o = 0.05 (circle), o = 0.72 (box shifted up 0.25),
and o = 5.37 (diamond, shifted up 0.5).
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Figure 9.6: Reduced radial density profiles obtained from simulations varying
the core radius (symbols) and profiles obtained by fitting the scattering using the
BoxGauss (dotted lines), ME2 (dashed lines), and ME3 profile (solid line). The
fitted profiles have been transformed using the parameters for the simulation
profile. Simulation profiles are shown for a core radius corresponding to surface
coverages o = 0.13 (circle), o = 0.72 (box, shifted up 0.25), and ¢ = 2.10

i

(diamond, shifted up 0.5).
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Figure 9.7: Radius of gyration obtained from simulation (lines and symbols) and
from fits (symbols) varying number of chains (circle and line) and core radius
(box and line). The inset shows the radius of gyration for simulations varying
chain length (diamond and line). Radius of gyration estimated by fitting the
scattering using the ME3 profile for simulations varying the number of chains
(star), core radius (plus) and chain length (cross).
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Figure 9.8: Compressibility k vs. surface coverage o obtained from fitting the
MES3 profile to the simulation data. Inset shows excluded volume coefficient
v(o) plotted against surface coverage for fits using the ME3 profile. Simulations
varying number of chains (circle), core radius (diamond) and chain length (box).
The solid line in the inset is the power law relation v(o) = 1.420":%* and the
solid line is the corresponding compressibility.
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Analytical calculations of scattering form
factors of stars, branched polymers and block
copolymer micelles for chains with excluded
volume interactions

Carsten Svaneborg and Jan Skov Pedersen*

Condensed Matter Physics and Chemistry Department, Risg National Labora-
tory, DK-4000 Roskilde, Denmark

*Present address: Department of Chemistry, University of Aarhus, Langelands-
gade 140, DK-8000 Aarhus C, Denmark

A general formalism is presented for scattering of acyclic polymer structures, and
expressions for the form factor of arbitrary branched polymers are derived. In addition
expressions are give for the form and intermolecular structure factor for micelles with
an arbitrary core geometry, and star polymers with arms consisting of arbitrary block
copolymers. Excluded volume interactions are included on the level of a linear chain
through the applied scattering expressions. The results for copolymer stars are used
for fitting scattering data obtained by Monte Carlo simulations for triblock copolymer
stars with f = 2,3, and 6 with and without interactions.

This is an incomplete draft of an article, however, the theory section is
complete and forms the majority of the article. The draft article will probably
converted into two or three articles, and generalised to structures that include

loops. Citations in this article refer to the thesis reference list.
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10.1 Introduction

Scattering techniques, such as light scattering, small-angle neutron or x-ray
scattering (LS, SANS and SAXS, respectively) are ideally suited for probing
the structure of colloidal suspensions [18]. However, a prerequisite for the useful
application of scattering methods is the availability of expressions for the form
and structure factor, corresponding, respectively to various geometrical models
for colloidal aggregates and to their interactions, as this is a requirement for
an accurate interpretation and modelling of experimental scattering data, from
which parameters related to the structure and interaction of colloidal aggregates
can be extracted in an reliable manner.

10.2 Theory

The scattering from a solution of identical composite particles such as micellar
aggregates or structures such as branched polymers consists of two terms

I(q) = F(q) + H(q).

Here the first term is the form factor, i.e. the Fourier transform of the pair-
distance distribution function between scatterers within the composite particle,
and the second term is the Fourier transform of the pair-distance distribution
function between scatterers belonging to different composite particles. This is
the intermolecular structure factor. By defining an apparent structure factor as

H(q)
S, =1+ ==
app(q) F(q) )
the total scattering can be recast in the simple form associated with the scat-
tering from dispersions of mono-disperse spheres.

I(q) = F(q)Sapp(q)-

The normalised (F'(¢ = 0) = 1) form factor of a composite particle is defined

o () (i)

Here ry, is a vector describing the location of the k’th scatterer in the com-
posite particle, which has an excess scattering length Aby. The average is over all
the possible conformations and orientations of the composite particle or struc-
ture. The composite particle is assumed to consist of a number of subunits which
could be subchains in branched polymer structures, blocks in block copolymers,
or corona and core in the case of micelles. In this case

)
F(q) = (Z ﬁk) <Z ﬂjﬂkAjk(Q)>,
P

j!k

as

> Abye T
k
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where the interference from pairs of sites in the j’th and k’th subunits is

Ajr(a) = (BiBr) " (Z ZAblebkieiQ(rnrki)) ’

l i

where j; and k; denote the subset of all the scatterers contained in the [’th
and ¢'th subunit, respectively. The total excess scattering of the ¢’th subunit
is B; = > ; Abg,. Assuming that each subunit has a reference point R;, such
as the center-of-mass of a solid particle, the end of a polymer chain, or the
boundary between two adjacent blocks in a copolymer, we can define the form
factor amplitude of a subunit ¢ as

—1
Ai(q) = (Z Abki> Z Abkieiq'(rki*Ri)‘
i i

Using this definition the form factor amplitude is normalised to unity in the
limit of small ¢ values, and the scattering from pairs of sites can be expressed
as

Aji(q) = A% (q) Ap(q)e'd PR

where A; denotes complex conjugation of A;. The form factor can be expressed
in terms of subunit form factor amplitudes as

F(q) o <Z B AjA; + ZﬂjﬂkA;Akeiq-<Rka>> :
J J#k

If, for instance, subunits j and k are two distant blocks on a N-block copoly-
mer, then a unique path consisting of steps from one block boundary to the
next can be constructed connecting the two reference points of the distant sub-
particles. The vector connecting the two reference points is nothing more than
the sum of all the vectors representing the individual steps. Thus assuming in
general that for any pair of subunits j and k& a path of nj, > 0 steps exists,
denote by R;k the 7’th step in that path, and define ng = Ry and R;L,ék =R,
the vector connecting the two reference points can be written in terms of indi-
vidual steps as

n]‘k

Rj—Rk:Z( ;k—R;;l).
i=1

In this case the form factor of the composite particle is
Njk . i i1
iq- R, -R
F(q) x <Zﬂ]2AjA;+ZﬂjﬂkA;AkHe ( sk ik )>
J J#k i=1

At this stage no approximations have been made. However, if we assume that
we can carry out the configurational and orientational average of the subunits
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independently of each other, which corresponds to an assumption that the pair-
distance distribution between scattering sites on different subunits can be fac-
torised into products of site-to-reference, reference-to-reference, and reference-
to-site probabilities, we can identity the form factor of the j'th subunit by
Fi(q) = <A]-A;f>, which is a real function, that only depends on the magni-
tude of the g vector due to the orientational average. If we furthermore assume
that the configurational and orientational average of the individual steps can be

carried out separately, we can define the phase factor of the i'th step between
subunits j and k as

. iq (R}, R,

;k(q) = <6 ( ’ ! ) )

which is the Fourier transform of the distance distribution of each step. For
example in the case of a polymer connecting two subunits, the phase factor is
the Fourier transform of the end-to-end distance distribution of the connecting
block. Subject to these assumptions the normalised form factor [F(g = 0) = 1]
of the composite particle is

-2 Nk
F(q) = <Z ﬂz‘) Z@ZFZ +2) " BiBA; <H \I’ék> Ay

i<k i=1

The expression for the form factor of a single composite particle resembles
the scattering expression for a solution of different particles, where the product
of phase factors plays the role of a partial structure factor between subunits
of the composite particle. This is due to the somewhat arbitrary distinction
between composite particle and subunit.

The Fourier transform of the pair-distance distribution between sites on
different composite particles can be derived through an analogous argument,
assuming that the configuration, orientation and location of different particles
are uncorrelated [110]. Assuming one of the reference points coincide with the
center of mass of the composite particle, then there exists a unique path of
nek > 0 steps (ne. = 0) connecting the center (reference point denoted by index
“c”) to the k’th reference point, where the 7’th step is denoted \I/ch In this case
the inter-particle structure factor is

—2 - 2
H(q) = (Z ﬁ’t) {ZﬁkAk (H qﬂck) } (Scc(q) - 1) )
[} k =1

where S..(q) denotes the center-to-center structure factor of the composite par-
ticles, which has to be supplied by some other means, such as PRISM theory
using an effective interaction potential between the composite particles. The
term in the curly parenthesis plays the role of the form factor amplitude of the
entire composite particle as it can be identified as the Fourier transform of the
radial scattering length distribution [110].

The expressions for the form factor and structure factor were derived assum-
ing that different composite particles, as well as different sub-particles within
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the composite particle, are uncorrelated. These approximations are valid at low
concentrations of particles, and in cases where the sub-particles are not strongly
interacting, such as micellar aggregates with a low surface coverage. It was
furthermore assumed that subsequent steps between reference points were not
orientationally correlated, and that individual steps only depend on the radial
distance. These assumptions are valid for sub-particles connected by flexible and
long semi-flexible chain molecules.

The expressions for the form and structure factor are geometrical statements
containing only information about the relative positions of sub-particles. Infor-
mation about the pair distance distribution within a sub-particle is described
through the form factor of that sub-particle, while the form factor amplitude
contains information about the distance distribution relative to the reference
point, and the phase factor contains information about the distance distribu-
tion between two reference points, such as the end-to-end distance distribution
of the polymer chain connecting two sub-particles. Interactions between scatter-
ers within each sub-particle is included in this description through the particular
equations used to describe these three contributions to the scattering functions.

10.3 Subunits consisting of chain molecules

For a chain molecule we chose as reference point one of the ends. The three scat-
tering function contributions: the phase factor, form factor amplitude, and form
factor, respectively, are the Fourier transforms of the end-to-end P, end-to-
site P, and site-to-site Ps, pair-distance probability distributions, respectively.
These probability distributions are typically given by the same function, that
describes the probability that two sites on the chain, that are separated by a
contour length [ along the chain, are located at a direct distance r from each
other. The scattering functions are defined as

W(q, L) = / arar?S24) b gy (10.1)

qr

L 1 3
A(g, L) =/ dlf/dr47rr28m(qr)Pes(r,l), (10.2)

0 qr
and
/ BT ) / dram? S8 p ) (10.3)
qr

where L is the total contour length of the chain. These integral expressions
can be recast into sums over the number of segments using the substitutions
L = bN and | = bn, where b is the Kuhn length, and N the total number of
segments. The Kuhn length of a semi-flexible chain is the segment length of the
corresponding flexible chain, and thus it is a measure for the length scale below
which the chain effectively becomes a rigid rod. The Kuhn length of a flexible
chain is identical to the step length of the chain as the direction of subsequent
steps are uncorrelated.
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The most basic example is a randomly orientated infinitely thin rigid rod
with length L. In this case the end-to-end probability distribution is Pee(r, L) =
§(L —r)/(47r?). The rigid rod is special as the contour length [ and direct dis-
tance r are degenerate parameters, and only the contour length integral has to
be performed. The end-to-internal point and internal-to-internal point distribu-
tions are both given by Pes(r,1) = Pss(r,1) = O(L — r)d(r — 1)/ (47wr?), where
d(r —1) takes care of the degeneracy. Here d(z) denotes the delta function, while
©(z) denotes the step function. Using these distributions it is straight forward
to perform the integrations (10.1)-(10.3) and one obtains

sin(qL)

‘Ilrod(QaL) = ) Arod(QaL) =
qL

Si(gL)
gL’

and

2Si(gL) 4 ., (qL>
I rod(qa L) - qL (qL)2 sin 92 )

where Si(z) = [; dysin(y)/y is the Sin integral. The expression for the rod form
factor was previous derived by Neugebauer [111]. For a flexible chain without
excluded volume interactions, all the pair distance distributions are given by a

Gaussian distribution
3 3 r2
P - — _Z
(r,1) (27rbl> b ( 2 bl)

Based on the Gaussian distribution the integrals (10.1)-(10.3) can be carried
out. The result for the form factor amplitude and form factor has previously been
given by Hammouda [108] and Debye [71]. Using the abbreviation z = (¢R,)*
where Rg = bl/6, the results can be stated as

[N

Uy(z) = exp(—z) Ap(z) = 1—e+p(—g:) and Fp(z) = .

2[exp(—z) — 1 + z]
5 .

Semi-flexible chains without excluded volume interactions are reasonably
described by the second Daniels approximation [55, 58|, which is given by

3 \%? 5b 2r? 334 3r2
P(rl)=|— l—-—+——-——— -
() (27rbl> ( s T aowr )P\ T
The three scattering functions can immediately be obtained by integrating

this distribution, and they can be written as a perturbation to the expressions
for flexible chains as follows

T 11 _
\I/Dam'els(xaNseg) =U,(z) + = <1 — —:E) e "’

1
Apani Nseg) = A —— (4—4e " + 1lze ™
Damels(xa seg) H(iU) + 30N ( e 7+ 1llxe ) ,

and
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FDaniels(xaNseg) = FD(HJ) + 15LN {4 + % — <11 —+ %) e—x} .

Here N is the number of statistically independent segments i.e. N =L/b.
These expressions are valid when ¢b < 3.1 and [ > 10b [52]. The expression for
the form factor and phase factor was previously given in [58].

For flexible chains with excluded volume interactions the end-to-end, end-to-
internal site, and internal-to-internal site distributions are commonly regarded
as being best described by the des Cloizeaux distribution |[70], which has the

form
P 2460 r 0
P(r;r,) = Br, ¢ <—> exp | —D (—) ,
To To

where r, = ,/<R%y/d> is the averaged site-to-site distance, for instance the

end-to-end R, end-to-site R, or site-to-site Rg, average distance, and d is the
space dimensionality. For a flexible chain with excluded volume interactions the

site-to-site distance is related to the number of segments as <R§y> = b2 =

2(1+y)(1+2y)R§, where n is the number of segments connecting the two sites, v
the excluded volume length exponent, and R, the radius of gyration of the chain.
The two exponents ¢ and € are given by § = 1/(1—v) and 0 = (y—1) /v, where
is the entropic exponent of an excluded volume chain. In the limit of long flexible
chains renormalization group theory estimates the exponents as v = 0.588 and
v = 1.1619 for d = 3 [68]|. The 7 exponent vary slightly depending on whether
one considers the end-to-end, end-to-internal site, or internal-to-internal pair
distance distribution. This is due to the increased degrees of freedom associated
with the end points compared to an internal point [60, 64|. B and D are nor-
malisation constants, and they are fixed by requiring that f;* d%rP(r,rg) = 1
and [° d%P(r,r,)r? = (r2,), where A4y = 2x4/2¢d=1 /(T[d/2])dr is the volume
of an infinitesimal spherical shell in d-dimensions.

Based on this distribution the phase factor, form factor amplitude, and form
factor can be calculated and expressed in terms of a series and an asymptotic
expansion valid at low and high ¢ values, respectively. Details are given in the
appendix. The results are summarised below using the following abbreviations

(14 2)(1+v) T(a) _ T[d/2)
X= 2 I‘(a+b)(ng)2’ =T
2+d+0 2
== and b=,

where I'[z] is the Gamma function. Using these abbreviations the phase factor
has an series expansion

Tla + bn](—X)™
=C ,
Z -I-n]n'
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and an asymptotic expansion

0o & (=1)"T[5]

2 n:oIT%-atnhl

\Il(qa Rg) =

The form factor amplitude has a series expansion

o

I'la + bn] (=xX)"
Z (4 +n]2vn+1) n!

’

and an asymptotic expansion

CT[£]Ta — &
o -1)"r atn atn
1C ( ) [ b ] X- Jg

n=0 b —2v(a+n)T [g ‘“g"] n!

The form factors based on the des Cloizeaux distribution was derived by
Utiyama et al. [70, 112], and is stated here for the sake of completeness; the
series expression is

d ['la+bn] (—X)"
F(g)=C , 4
9 —o0 (1 +vn)(1+2vn)T [% + n] n! 104)

while the asymptotic expansion is

orfo-gr[s] g

-] -1

F(q) =

(_1)n1—1 [a#b»n] .
Ch
+ 7;) b—2v(a+n)|[b—rv(a+n)]l [% — ”T"] n!

The limit where chains are flexible and non-interacting is given by d = 3,
v = 0.5, and v = 0. In this case the des Cloizeaux distribution reduce to a
Gaussian distribution, and the des Cloizeaux scattering expressions reduce to
the previously stated Gaussian expressions.

All these sums can be written in the form

S(qRy) = Z snan(qRy)Pr = Z spe? T where x = In(qR,),
n=0 n=0

and s, = sign(ay,) in which case the a, constants can be defined to be positive,
e.g. if a, = 0 then the choice s, = 0 and a, = 1 produce the same term. A
sufficient number of constants b, = In(a,) can be calculated in advance, allowing
the sums to be estimated with the required precision, without a need for the
repeated evaluation of Gamma functions.
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10.4 Excluded volume interactions

When writing the Fourier transform of the pair-distance distribution as a prod-
uct of form factor amplitudes and phase factors, it was implicitly assumed that
the pair-distance distribution could be factorised into a convolution of indepen-
dent site-to-reference, reference-to-reference, and reference-to-site probabilities.
This is only true if the correlations caused by interactions between subunits can
be neglected. In the case where the same probability distribution describes an
entire linear chain consisting of several blocks, the interference term can be cal-
culated exactly. When assuming that the same pair-distribution describes the
entire chain, the interference between two distant different blocks j and &k on a
linear chain, separated by a contour length of L;x, is given by the interference
is given by

Lidl; (Le dl
A]k(qaLjaijaLk) :A ’ _]/ k/ dr 47TTQSln(q ) ss(ralj +L]k+lk)7

qr

(10.5)

where Pg, is the site-to-site probability distribution. For a Gaussian distribution

Aji(q; Lj, Lk, L) = Au(q, Lj)Vo(q, Ljr)Ar(q, Li,) where the form factor am-

plitudes and phase factor was presented in the previous section. For a excluded

volume chain the des Cloizeaux distribution is used, and a series expansion of

the phase factor and performing the contour length integrations, the interfer-

ence term can be expressed, using the radius of gyration of the two blocks Ry ;
and R, and of the inter-connecting chain segment R i, as

% (f[Rg2] + f[Rg123] — f[Rg12] — f[Rg23])

with the radius of gyration abbreviations

Aji(q; Rgj, Ry jis Rg k) =

v

v 1 1
Rg’lg = <R  + Rg ]k) ; Rg,23 = <R£,jk + R;,k) ’

and 5
Rg,123=<R +Rggk+R ) s

and the function f is given by

_ R \* Tla)(1 +v)(1 + 2v)
f(R) = (W) g ( 3T7a + b] q2R2> ;

where g has a series expansion

i Cla + bn](—y)"

(1+vn)(1 + 2vn)T[2 + n]n!

and an asymptotic expansion

CTla—20[L)y™%  Tla—4r[L)y >
A e - 1)
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S b(—1)"T[ &2y~
+r;) [b—2(a+n)v]b— (a+ n)u]I‘[% — ‘“g”]n!'

In practice the crossover between the series and asymptotic expansion should
be located around y = 15.

10.5 Arbitrary linear block copolymer

The scattering from a linear copolymer consisting of an arbitrary number of
blocks, interacting with excluded volume interactions is given by

Flin(q) = Z BIFi(q,Li) + 2, BiBrAjk(q, Ljk),

j<k

here L; is the contour length of the i'th block, while Lj;; = Zf:_jlﬂ L; is the
contour length of all the blocks between the i’th and j’th block. Note that it has
been assumed that the pair-distance distribution between blocks is still given
by the same des Cloizeaux distribution.

10.6 Arbitrary branched polymer

For an arbitrary branched polymer there are two contributions to the total
scattering: One from the form factor of individual sub-chains yielding an Fj
for each subchain, and another from interference terms between all pairs of
different sub-chains. It is assumed that a unique path consisting of steps from
one branch to the next branch exists, which connect any two sub-chains in
an arbitrary branched polymer. We then denote the i’th step from branch to
branch point between the j'th and k’th polymer segment out of n;; > 0 steps
by ¥(q, L;k), where L;k is the contour length of the step along the chain. Here
it has been assumed that all sub-chains have the same Kuhn length, such that
the phase factor is only a function of the contour length of a sub-chain. It is a
trivial extension to include different Kuhn lengths of the various segments. In
this case the pair distance distribution between any two sites on two different
sub-chains consists of a step from the site on the j’th subchain to the reference
point (yielding a factor A;), each of the n; steps the path connecting the two
sites yields a factor, which for the i’'th step is \Il(q,L;k), and a step from the
reference point to a site on the £’th chain (yielding a factor Ay). The form factor
of the branched polymer is the sum of the form factors of the individual sub-
chains, and the sum of all such possible paths between sites on chains weighted
by the respective scattering lengths.

—2 Nk
Fyranen(q) = <Z ﬁz‘) (Z BiFi(q) + 2 BiBrA;(q)Ar(q) [] ¥(a. Lﬁ))
5 5 =1

j<k

This expression have previously been given in the limit of Gaussian chains
[19].
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10.7 Micelles with an arbitrary core

The form factor of a micelle with an arbitrary core geometry consists of contri-
butions from scattering between the following sub-units: core-core, core-chain,
chain-chain on the same chain, and chain-chain between two different chains.
The reference point of the core is the center of mass, while reference point for
the tethered chains is the tethering point, i.e. the reference point of the chains
is the entire core surface. Index “ch” denotes chains, “co” core and “s” denotes
the surface.

The pair distance between a scatterer in the core and a chain is given by the
step from the core scatterer to the core reference point (A, ), a step from the core
reference point to any tethering point on the surface (¥y), and from a tethering
point to any site on a chain (A.,). However, as the core and core surface are
fixed relative to each other the orientational average has to be performed on the
product of the respective steps yielding a term proportional to (A., V) Ay, for
the core-chain contribution to the total scattering. The pair distance distribution
between two sites on two different chains can be regarded as a step from a site
on one chain to the tethering point of that chain (A.), the step from one
tethering point on the surface to another tethering point (Fy), and a step from
that tethering point to a site on the other chain (A.,), which yields a term
AcpFs Ay, for the chain-chain scattering between different chains. The scattering
contribution from a pair of scatterers within the same chain is proportional to
the chain form factor Fg. Bcp is the total scattering length of the corona and
contains all sites within the corona, however, intra-chain scattering contributes

2, /N while the inter-chain scattering contributes 3% (N — 1)/N to the total
corona scattering length. Taking care to introduce all the numerical prefactors
the form factor of a micelle becomes

1
Fmicelle(Q) = (

- 2
Beo + ﬁch)2 (ﬂcon + 2Bcolen <ACO\I]S> Ach

+%5thch + %ﬂghAthJ :

Assuming that the center of mass of the core coincides with the center of
mass of the micelle, we can also give the intermolecular structure factor of the
micelles. This consists of the pair distance distribution from a scatterer in the
core to the center of the core, yielding a term A.,, and a core-chain contribution
from the core center to any site on any chain. This consists of a step from the
center of the core to the surface (¥y), and a step from the tethering point to
any site on a chain (A,), yielding a term WyA.;. The result when the excess
scattering lengths are included becomes [110]

1

Hmicelle(Q) = m (ﬁCOAco + ﬁchAch\Ils)2 [SCC(q) - 1] .

In the special case where the core is spherical the phase and form factor of
surface, and the form factor amplitude and form factor of the core, respectively,
are given by
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sin(qReo)

F,(qR.,) = U?
cho s(q co) )

‘Ils(cho) =

and

3[Sin(cho) B cho COS(cho)]
(qReo)?

where R, denotes the radius of the core. Inserting these expression in the micel-
lar form factor will reproduce the model of Pedersen and Gerstenberg [106, 107].
As correlations between chains and the core have been neglected chains are able
to enter the core region, however, core repulsion can be mimicked by increas-
ing the radius in the surface expressions relative to the radius used in the core
expressions.

Aco =

A2
co = Aco,

10.8 Stars of arbitrary block copolymers

The form factor of a star polymer made of block copolymers contains three
contributions: The form factor of each block, the interference between two blocks
on the same chain, and the interference between two blocks on two different
chains. We denote the form factor amplitude of the j’th block on the i’th chain as
Agl), and the corresponding phase factor as ¥;;. The interference term describing
the pair distance between two sites on block j and [, respectively, on the ¢'th
chain consists of a jump from the site to the block boundary closest to the other
site (providing a A;Z) factor), then a number of steps from block boundary to
boundary along the chain, each step providing a phase factor until the reference

o

point [ is reached yielding . A step from the reference point to the

a= ]+1
site on the block provides a form factor amplitude Al( ).

Similarly the interference term between two sites j and I on two different
chains ¢ and k consists of a jump from the site to the block boundary closest
(i))

to the star center (providing a factor A]- , then 7 — 1 steps between block

boundaries towards the center providing a factor Hf;:ll \Ilg), and a number of
steps from the center to the I’th block boundary on the k’th chain providing
Hl ! \Il , and a single step from the block boundary to the site providing the
(k)

form factor amplitude A;

Let f be the number of arms, and n; the number of segments on chain i.
Then, neglecting the correlations introduced by steric interactions between the
different arms and different blocks, the normalised |Fjtqr (¢ = 0) = 1] form factor
of the star consists of the sum of all such paths connecting any two sites:

A . ) f ni o
Flstar( (Z Z ﬁ ) Z Z (IB](z)) Fj(z) 4+ 9 Z Z IB](z)lBl(z)A(z)
i=1j=1 1 .

i=1j=1
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Lo S0 40 40 1T o TT o ®
+2 > S pUst A T el I vy |- (10.6)
'L', k=1 j=1l1=1 a=1 =1

Here Fj(i) is the form factor, Agi) is the chain form factor amplitude, \Ilgi) is
the phase factor, and ﬂ](.i) is the excess segmental scattering length of the j’th
block on the 7’th chain. Ry ;; denotes the radius of gyration of block j on the
1’th chain. We use a notation where Hla:j W, = 1if I < 5. The corresponding
normalised structure factor is given by the sum of all paths connecting any site

on any chain to the center and it is

fooni 2w j—1 2
Hstar (Q) = (Z Z ﬁzg) (Z Z/Biinj H \I/ia) (Scc(Q) - 1) :
a=1

i=1j=1 i=1j=1

10.9 Monte Carlo simulations

Monte Carlo simulations of the scattering from stars of semi-flexible triblock
copolymers with and without excluded volume interactions have been performed.
The chains on the stars were modelled by a discrete Kratky-Porod model with
L/b = 100 or 400 segments per arm. Excluded volume interactions were in-
cluded by placing six hard-spheres with radius e = 0.1b6 per Kuhn length of
the chain. This is a choice which is known to reproduce the binary cluster in-
tergral of polystyrene in a good solvent [93]. The scattering at homogeneous
contrast (f; = fo = B3 = 1), as well as the scattering from the inner (8; = 1,
B2 = B3 = 0), middle (B = 1, B1 = B3 = 0), and outer (B3 =1, 81 = B2 = 0)
scattering have been obtained.

10.10 Results and Discussion
In the special case of a triblock copolymer star with f arms eq. (10.6) reduce to

Fytar(q) = =" (B + o+ B3) 2 {BLF1 + B3Fs + B3 F
+2 (8182 A1 Ag + (253 A2 A3 + B133A1 A3¥s)
+(f = 1) (BT AT + B3 A5V7 + 3 AZUT V3
+2 (6162414201 + 2342 A303 U5 + 315 A1 A3V W) },

This expression was fitted simultaneously to the simulation data using the
four scattering contrasts calculated with the Daniels expressions for the form
factors, form factor amplitudes, and phase factors and fitting the radius of gyra-
tion of each block, as well as the number statistical independent segments in the
range of ¢b from 0.1 to 10. The fits shown in figures 10.1 - 10.3 are in excellent
agreement with the simulation results, and the reduced x?2,, < 1.2 for all fits.

The form factor of triblock copolymer stars including excluded volume effects
on the linear level is given by
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Femuol(q) = f~1 (B + Bo + B3) 2 {BEFy + B2F, + B2 Fs
+2[8152A(L1,0, La) + B283A(L2,0, L3) + B183A(L1, Lz, L3)]
+(f = 1) [BTA(L1,0, L1) + B3 A(Lg, 2Ly, Ly) + B3 A(L3, 2Ly + 2Ly, L3)
+2 (8182 A(Ly1, Ly, Lo) + Boff3A(Lo, 2Ly + Lo, L) + B183A(Ly, Ly + LQ,(L3))])} :
10.7
Here the form factor F' and form factor amplitude A is given by eq. (10.4) and
(10.5), respectively. Excluded volume interactions within each arm are accounted
for in this expression, while the excluded volume interactions between arms
ignore the presence of the f — 2 arms. Hence for f = 2 eq. (10.7) includes
the full excluded volume effects. Note the middle block has twice the length
of the other blocks. The form factor has been fitted to simulation results for
the scattering from a two-arm star with excluded volume interactions and semi-
flexibility. Fit parameters were the radius of gyration of the three blocks, and
the critical exponents v and « as well as four flat backgrounds that is added to
the scattering, thus effective exponents averaged over the entire star is obtained.
These backgrounds has the effect of mimicking the effects of semi-flexibility on
the scattering. The fit has x?,, = 2.7 and is shown on figure 10.4.
The fit yields the exponents v = 0.583 and v = 0.449. Renormalization
group theory [68] yields ¥ = 0.588 and vy = 1.1619 in the long flexible chain
limit.
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10.11 Appendix

The des Cloizeaux distribution [64, 60] is

o= 2(2) (02
ro=\/<R55> :\/bQZ2V :Rg\/2(1+27;)(1+1/),

where b is the Kuhn length of the chain and n the number of segments, while
R, is the radius of gyration. v, v are the critical length and entropy exponent,
respectively, which for d = 3 is estimated to be v = 0.588 and v = 1.1619 from
RGT theory [68] for infinite long flexible chains. The Gaussian limit is d = 3,
v = 0.5, and y = 0 in this limit r3/2 = b*n/6 = R}

B and D are normalisation constants, derived from the zeroth and second
momenta of the des Cloizeaux distribution:

with

_5r(g)Da D—FF(GH)T/()
~ 279/2T () ~ld T(a) ’
where the following abbreviations are used: 6 = 1/(1—v) and 0 = (y—1)/v. We

use the method and notation used by Forster and Burger|[70]. Scattering from
a distribution is in arbitrary dimension given by

d
o0 d (qr)? 2mardt
g = P Fi(=: -7 3\22 " gy
(Q7TO) /0 (7’,7’0)0 1(27 4 ) F[d/2] dr
For d = 3, this reduces to
U(q,r,) =/ P(r)smqr47rr2dr.
0 ar

The definition of the ,F} hyper geometric function is

= I[p 2"

oF1(b;2) = Z_‘;] Tb+nnl

Inserting the expression into the integral and integrating produces the series
expansion of the phase factor:

72B & Ta+ bn v v "
\I/(q,Rg):2 B [la + bn] <_(1+2 )(1+ )( Rg)2>

0D = T2+ n]n! 2dD?/°

We can obtain the asymptotic expansion by rewriting the sum as

a+bn] (—z)"
=03 g o 103
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where the following abbreviations were used

a:2+d+9 b:g . (1+2v)(1+v)

5 5 2dDb (4By)* C =

Note that a series can be expressed as a complex integral as

Z a(n)(—z)" _ /cc—i—ioo d—zla(z)f‘[_z]xﬁ

n=0 n' —100 271-2
where the integration path is chosen to include all poles of the Gamma function,
which are located at zero and all positive (real) integers. The asymptotic series
expansion is obtained by summing the residues of all poles for Re(z) < 0, i.e.
the poles of the prefactor

I'[a + bz]
a(z) = 5o,
C[d/2 + Z]
which are located at a + bz = —m, where m is zero or a positive integer. The

residue of the integrand in the m’th pole is

, [m;a]l‘im;ra
Res[a(s)T'[—s]z®,s = —(a + m)/b] = Cmba g]’
b 2
which yields the asymptotic series as
C & (_1)mr[m+a]$fm2'“
(g, X) = — b

o N

Inserting the sum, using r2(n) = b?n?”/d, and interchanging the order of
the sum and the integration, the integration can be carried out term by term
yielding the series expansion of the form factor amplitude as

S e (_(1+2u)<1+v> R)

A(g) =C
@ 7;) F[% + n](2vn + 1)n! 2dD?2/4

The asymptotic expansion is derived analogous to that of the phase factor.
Simple poles are located at z = —(a + m)/b and z = —1/(2v) and summation
of the corresponding residues yields the asymptotic expansion

Dlllla— gyl @ & (~)"C[*5m]e 5"
A(g,N)=C
(q ) ( 2T {% _ %] + mZZO m'(b — 2(a + m)y)l" {% _ mzra])
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Figures
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Figure 10.1: Triblock copolymer star (two arms) scattering for semi-flexible
chains without excluded volume interactions (L/b = 100). Scattering for bulk
contrast, inner block, middle block, and outer block (from bottom to top using
boxes), fit (line).
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Figure 10.2: Triblock copolymer star (3 arms) scattering for semi-flexible chains
without excluded volume interactions (L/b = 100). Scattering for bulk contrast,
inner block, middle block, and outer block (from bottom to top using boxes),
fit (line).



142 CHAPTER 10. ARTICLE IV
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Figure 10.3: Triblock copolymer star (6 arms) scattering for semi-flexible chains
without excluded volume interactions (L/b = 100). Scattering for bulk contrast,
inner block, middle block, and outer block (from bottom to top using boxes),
fit (line).
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Figure 10.4: Triblock copolymer star (2 arms) scattering for semi-flexible chains
with excluded volume interactions (L/b = 400). Scattering for bulk contrast,
inner block, middle block, and outer block (from bottom to top using boxes),
fit (line).
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Chapter 11

Conclusion

The aim of the work presented in this thesis was to investigate the scattering
from diblock copolymer micelles with a spherical core using Monte Carlo (MC)
simulations. The purpose of the simulations was to formulate an expression
for the micellar form factor, that can be used when analysing experimental
scattering data. Using the solution profile scattering to represent the corona form
factor such an expression was formulated, and the expression was validated using
self-consistent analysis based on Monte Carlo simulation data in article II. These
MC simulations were performed varying the number of chains, chain length
and core radius within the experimentally available range of surface coverages
for diblock copolymer micelles. The corona form factor was obtained directly
from simulation results for the intra-chain and inter-chain scattering, while the
solution profile scattering was derived based on the simulation scattering results
for the intra-chain and corona form factor amplitude. Comparing the two results
for the corona form factor shows an excellent agreement for all simulation data,
even at the highest surface coverages. This demonstrates that the scattering from
the micellar corona can be regarded as being that of a quasi two dimensional
dilute/semi-dilute polymer solution, a solution that is confined to the micellar
corona region given by a radial profile with a width comparable to the chain
radius of gyration. The comparison shows that the polymer solution scattering
can be accurately approximated by an RPA approximation.

Article I investigated the validity of the model due to Pedersen and Gersten-
berg. This model includes effects due to single chain scattering and approximates
the effects of core expulsion, but it neglects excluded volume interactions within
the corona. The conclusion was that this model provides reasonable accurate
estimates of the radius of gyration and the corona center of mass distance from
the core center for surface coverages less than unity, while deviations increased
for increasing surface coverages above unity. The solution profile expression for
the corona form factor includes excluded volume interactions as well as core
expulsion, and the expression provides excellent fits to the observed scattering
which was shown in article III. The estimated parameters have been compared
to the same parameters obtained directly from the MC simulation, and it was
shown that very accurate estimates for the radius of gyration and the shape of
the radial profile are obtained for all simulations. This has validated the pro-
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posed solution profile expression for the corona scattering, not just as being a
good description of the corona form factor, but also as an excellent tool for
estimating physical parameters from the experimental scattering data.

The solution profile concept also allows scattering due to the average ra-
dial profile and scattering due to density fluctuations within the profile to be
separated, even though the scattering due to the radial profile is the dominant
contribution to the corona form factor for low ¢ values. This enables the scat-
tering due to density fluctuations in the forward direction to be obtained using
both an model fitting approach and a self-consistent approach. This has enabled
the extraction of the corona compressibility and apparent second virial coeffi-
cient due to the chain interactions within the micellar corona from the simulated
scattering.

The osmotic compressibility has a universal dependence on surface cover-
age, with small deviations at very high surface coverages, which we attribute to
a weak dependence on surface curvature and number of chains. The apparent
second virial coefficient for all simulations approximately collapses onto a com-
mon power law relation, and the power laws obtained from the self-consistent
analysis and model fitting approaches are in reasonable agreement. The osmotic
compressibility and apparent second virial coefficient have an dependence on
reduced surface coverage analogous that of an ordinary polymer solution on the
reduced concentration ¢/c*, hence validating the claim that the micellar corona
can be regarded as a quasi-two dimensional polymer solution.

Article IV provides a way of calculating the form factor and structure factor
of polymer structures such as star copolymers, branched polymers, copolymer
micelles, and other structures that can be regarded as consisting of a number of
connected subunits. General expressions are presented for the form and struc-
ture factor for the polymer structures at level of approximation of the model of
Pedersen and Gerstenberg, i.e. interactions between subunits are neglected, how-
ever, it is shown how to include excluded volume interactions between subunits
on a linear chain, such as the effects of excluded volume interactions between
blocks in a copolymer. The formalism requires the knowledge of phase factors,
form factor amplitudes, and form factors for all the subunits, for a polymer.
These are the Fourier transforms of the end-to-end, end-to-internal site, and
internal-to-internal site distance distributions. In the article, results are pre-
sented or reviewed for subunits consisting of flexible and semi-flexible chains, as
well as chains with excluded volume interactions.

Expressions without excluded volume interactions have been fitted simul-
taneously to four contrasts of a triblock copolymer star with two, three and
six arms, respectively, and the fits are in excellent agreement with the simula-
tion results. An expression with excluded volume interactions has, furthermore,
been fitted to a triblock copolymer star with two arms, e.g. a linear pentablock
copolymer, and this fit also shows excellent agreement

The articles and the present thesis describe some new simulation techniques.
The chain creation technique using a virtual zeroth bond have lead to a con-
siderable simplification of creating a chain with a particular configuration, and
has significantly simplified the computational task of correcting vertex positions
for numerical errors introduced by the repeated pivot moves compared to the
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technique due to Stellman and Gans [102]. A hybrid Fast-Fourier-Transform al-
gorithm for sampling the scattering on a logarithmically distributed ¢ scale has
been presented, which greatly reduces the time required for sampling the partial
scattering contributions.

A prerequisite for an accurate analysis and interpretation of experimental
data is the existence of advanced models. This thesis and the articles included
have shown that a relatively simple expression exists for the scattering from
diblock copolymer micelles. And a general formalism for calculating form factors
of polymer micelles and branched polymer structures has been presented. It is
the author’s hope that the results presented in the report will be applied for
interpreting experimental scattering results, and provide not only information
but also knowledge about the structure of complex fluids.

11.1 Suggestions for future work

The chapter summary of articles ended by proposing a generalisation of the
scattering from a micelle with an arbitrary core geometry by recasting the
corona scattering expression using a solution profile scattering term. However,
this expression has yet to be checked using simulation results. Simulations of
the scattering from micelles with end-capped cylindrical cores have already been
performed, but has yet to be analysed. It would also be interesting to perform
simulations with surface coverages in the brush regime, to compare Monte Carlo
results with the many theories that exists in this limit, and, for instance, to in-
vestigate the compressibility dependence on surface curvature and number of
chains.

All the simulations in this thesis have been performed for an athermal sol-
vent. This is sufficient to provide accurate expressions for the scattering from
polymers in a good solvent, however, it would be interesting to include an chain-
chain interaction potential such that, for instance, the effects of the screened
electrostatic interactions polyelectrolyte corona could be investigated.

The RPA approximation in the solution profile scattering contribution works
very well within the range of surface coverages simulated, but a full PRISM
treatment of the micellar corona should be possible, and this would yield the
direct correlation function ¢(q) as function of number of chains, chain length, and
core radius. This would provide an expression for the solution profile scattering
which does not rely on the RPA approximation.

The effects due to the structure factor has yet to be explored. In the chapter
with the summary of articles an equation for the structure factor using the
solution profile expression was proposed for a micellar solution, however, the
center-to-center structure factor Se.(g) is assumed to be given in this expression.
However, this center-to-center structure factor should also be amenable to a
PRISM treatment for instance by defining an effective micelle-micelle potential
based on the degree of overlap of the two micellar coronas, which in a mean field
approach is simply provided by the overlap of the radial monomer distributions
for two micelles.

In article three maximum entropy (ME) estimate for the radial profile was
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proposed based on knowledge of the first two/three moments of the profile.
These parameters were subsequently obtained by fitting the corona form fac-
tor amplitude based on the ME profile to the simulated scattering. It should
be possible to formulate a direct maximum entropy expression that provides
the corona profile by maximising the entropy subject to the constraints posed
by the known scattering data without the assumption that the profile can be
represented by a particular functional expression.

The formalism for calculating form and structure factors, which generally
neglects excluded volume interactions, has been extended to include excluded
volume interactions on the level of linear molecules. An interesting problem
would be how to introduce correlations due to interactions for instance between
the arms of star polymers. Renormalization group theory calculations for the
scattering from star polymers with excluded volume interactions exist, and simi-
lar techniques would probably be required for the general problem of introducing
interactions. An alternative approach would be to add some general expansion
that approximate the effects due to excluded volume interactions, where the
expansion parameters could be obtained by fitting numerical simulations. This
would provide a general method for parameterising Monte Carlo scattering re-
sults from polymer structures.
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