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Chapter 1Abstra
tDiblo
k 
opolymers dissolved in a sele
tive solvent self-assemble into mi
ellaraggregates. These aggregates 
onsists of a di�use 
orona of the dissolved blo
ksand a dense 
ore of the insoluble blo
ks. The 
orona s
attering has been investi-gated using the Monte Carlo simulation te
hnique. The 
orona was representedas a number of 
hains tethered to a spheri
al 
ore, 
hains intera
ted throughex
luded volume intera
tions and they were ex
luded from the 
ore region. The
orona s
attering of a mi
elle 
ontains information about single 
hain proper-ties, su
h as the radius of gyration, as well as overall properties su
h as theradial monomer pro�le. The 
orona s
attering 
an be separated into two 
ontri-butions, one due to intra-
hain and another due to inter-
hain s
attering. The
orona s
attering 
an, furthermore, be regarded as being 
aused by an averageradial pro�le (as in a 
ore-shell model) and a s
attering 
ontribution due todensity �u
tuation 
orrelations about this average radial density pro�le. These�u
tuations are 
aused by 
hain 
onne
tivity and 
hain-
hain intera
tion e�e
tssu
h as the "
orrelation hole". The �u
tuation s
attering 
arries informationabout the 
ompressibility of the 
orona.Simulations were performed systemati
ally varying the number of 
hains inthe 
orona, the 
hain length, and 
ore radius 
orresponding to surfa
e 
overagesin the experimentally a

essible regime for diblo
k 
opolymer mi
elles. Duringsimulations the partial s
attering 
ontributions due to intra-
hain and inter-
hain s
attering as well as the s
attering due to the radial pro�le were sampled.Properties su
h as the single-
hain radius of gyration, 
hain 
enter-of-mass dis-tan
e to the 
ore, and the radial monomer pro�le were also sampled.The model of mi
elle s
attering due to Pedersen and Gerstenberg [J.S. Ped-ersen and M.C. Gerstenberg, Ma
romole
ules (1996), 29, p. 1363℄ negle
ts thee�e
ts of ex
luded volume intera
tions. The validity of this model, whi
h 
anestimate the 
hain radius of gyration and 
enter-of-mass distan
e from the 
ore,was investigated using simulated s
attering data. The 
on
lusion was that themodel provides a

urate estimates of for low surfa
e 
overages, but that theestimates get progressively worse as the surfa
e 
overage is in
reased.Using a self-
onsistent analysis of the simulation data it was shown thatthe 
orona s
attering 
an be very a

urately represented by a weighted averagebetween a 
ore-shell model and a Random Phase Approximation (RPA) expres-3



4 CHAPTER 1. ABSTRACTsion, where the 
ore-shell model represents the s
attering 
ontribution due tothe radial pro�le, and the RPA expression des
ribes the �u
tuation s
attering
ontribution. The RPA approximation depends on the intra-
hain s
atteringand an ex
luded volume parameter proportional to the apparent se
ond virial
oe�
ient. The resulting expression is denoted solution pro�le s
attering as ithas the interpretation of being the s
attering from a two dimensional layer ofdilute/semi-dilute polymer solution 
on�ned in a shell around the mi
elle sur-fa
e with some radial density pro�le. The polymer solution 
an be regarded asbeing two dimensional sin
e the width of 
orona is 
omparable to the radius ofgyration of the 
orona 
hains.The forward s
attering due to density �u
tuations 
an easily be obtainedin this approa
h, and this provides the osmoti
 
ompressibility of the 
orona.The 
ompressibility obtained from the self-
onsistent analysis shows an univer-sal dependen
e on the redu
ed surfa
e 
overage, sin
e 
ompressibilities obtainedfrom simulations varying number of 
hains, 
hain length, or 
ore radius 
ollapseonto a 
ommon 
urve. The 
orresponding apparent se
ond virial 
oe�
ient fol-lows an approximate power law as fun
tion of redu
ed surfa
e 
overage. The
orona 
ompressibility shows a surfa
e 
overage dependen
e analogous to thatof a polymer solution as fun
tion of redu
ed 
on
entration 
=
�. This validatesthat the mi
ellar 
orona 
an be regarded as a quasi-two dimensional polymersolution.The solution pro�le s
attering expression has also been used for �tting theMonte Carlo simulation data. The expression depends on the single 
hain radiusof gyration, an ex
luded volume 
oe�
ient, and a radial pro�le of the 
orona.Ex
ellent �ts were obtained within the entire range of experimentally availablesurfa
e 
overages using a Maximum Entropy estimate for the 
orona pro�le.The radius of gyration and the 
orona pro�le were estimated by the �ts, andthese were found to be in very good agreement with results obtained dire
tlyfrom the Monte Carlo simulation.A formalism for the form fa
tor and stru
ture fa
tor of 
onne
ted a
y
li
polymer stru
tures was developed based on a generalization of a diagrammati
interpretation of the mi
elle s
attering model due to Pedersen and Gerstenberg.Some examples of stru
tures des
ribed by this formalism in
ludes mi
elles withan arbitrary 
ore geometry, bran
hed polymers, and 
opolymer stars. The for-malism in
lude ex
luded volume e�e
ts on the level of a linear 
hain, and anexpression for the form fa
tor of a 
opolymer with ex
luded volume intera
tionsis given. Expressions for the form fa
tor of a triblo
k 
opolymer star with andwithout ex
luded volume intera
tions have been derived using the formalism,and �tted to Monte Carlo simulations results for the s
attering without ex
ludedvolume for f = 2; 3; and 6 arms. S
attering was sampled for the entire star aswell as the individual blo
ks yielding s
attering for four di�erent 
ontrasts intotal. The simulated s
attering results with ex
luded volume intera
tions for tri-blo
k 
opolymer stars with f = 2 arms have also been �tted. These �ts show anex
ellent agreement between the simulated s
attering results and the theoreti
alform fa
tor.



Chapter 2ResuméNår diblok
opolymere opløses i et opløsningsmiddel, der er godt for den eneblok og dårlig for den anden blok, danner 
opolymerene en mi
elle beståendeaf en di�us korona af den opløste blok og en tæt kerne af den uopløselige blok.Koronaspredningen er blevet undersøgt med Monte Carlo simulationsteknikker.I simulationerne blev koronaen repræsenteret som et antal af kæder, der sidderfast på en kugleformet kerne. Kæderne vekselvirkede med �ex
luded volume�vekselvirkninger, og var udelukket fra kernen.Koronaspredningen fra en mi
elle indeholder information om enkeltkædeegenskaber så som kædernes gyrationsradius og radialfordelingen af monomerer.Koronaspredningen har to bidrag, et fra intrakæde og et fra interkæde spred-ning, dvs. spredning fra den enkelte kæde og spredning mellem kæder. Ko-ronaspredningen kan også opfattes som værende summen af to bidrag fra spred-ningen fra gennemsnits radialpro�len (en kerne-skal model) og fra korrelationeraf tætheds�uktuationer. Disse �uktuationer skyldes, at kæderne er sammen-hængende og kæde-kæde vekselvirkninger som for eksempel �korrelations hullet�.Fluktuationsspredningsbidraget indeholder information om koronaens kompres-sibilitet.Simulationer er blevet udført, hvor antallet af kæder, kædelængde og kerne-radius systematisk er blevet varieret svarende til de over�adetætheder, der kanopnås eksperimentelt for diblok
opolymer mi
eller. Under simulationerne blevspredningsbidrag så som intrakæde- og interkædespredningen samt spredningenfra radial pro�len indsamlet. Egenskaber som enkeltkæde gyrationsradius, dengennemsnitlige afstand fra kædernes massemidtpunkt til kernen og radialpro�lenaf monomere blev også indsamlet.Modellen for mi
ellespredningen, der er foreslået af Pedersen og Gersten-berg [J.S. Pedersen and M.C. Gerstenberg, Ma
romole
ules (1996), 29, p. 1363℄,negligerer e�ekterne af ex
luded volume vekselvirkninger. Gyldigheden af dennemodel er blevet undersøgt ved hjælp af data fra simulationer. Konklusionen var,at for små over�adetætheder giver modellen præ
ise estimater for enkeltkædegyrationsradius og kædernes massemidtpunkts afstand til kernen, men at esti-materne bliver dårligere, som over�adetætheden øges.Ved hjælp af en selvkonsistent analyse af simulationsdata blev det vist, atkoronaspredningen kan repræsenteres meget præ
ist som et vægtet gennemsnit5



6 CHAPTER 2. RESUMÉmellem en kerne-skals model og et Random Phase Approximation (RPA) udtryk,hvor kerne-skals modellen repræsenterer spredningsbidraget fra koronaens pro-�l, mens RPA-udtrykket beskriver spredningsbidraget fra tætheds�uktuationer.RPA-udtrykket afhænger af intrakæde spredningen og af en ex
luded volumeparameter, der kan vises at være proportional med den anden virial koe�
ient.Det resulterende udtryk kan fortolkes som spredningen fra et to-dimensionalt lagaf en �dilute/semi-dilute� polymeropløsning med en vis radialpro�l. Udtrykketkaldes derfor opløsningspro�lspredning. Polymeropløsningen kan opfattes somværende to-dimensional fordi koronaens tykkelse er sammenlignelig med korona-kædernes gyrationsradius.Den fremadrettede spredning fra tætheds�uktuationerne kan let udregnesmed opløsningspro�lsprednings udtrykket, og det giver den osmotiske kompres-sibilitet af mi
ellens korona. Kompressibiliteten fra den selvkonsistente analysehar en universal afhængighed af den redu
erede over�adetæthed fra simula-tioner, hvor antallet af kæder, kædelængde og kerneradius falder på den sammekurve. Korona kompressibiliteten har en over�adetæthedsafhængighed, der eranalog med kon
entrationsafhængigheden af 
=
� for en polymeropløsning. Detteindikere at mi
elle koronaen kan opfattes som en kvasi-to-dimensional polymer-opløsning.Opløsningspro�ludtrykket er også blevet �ttet til Monte Carlo simulations-data. Udtrykket afhænger af enkeltkæde gyrationsradius, en ex
luded volumeparameter og et udtryk for koronaens radialpro�l. Ved hjælp af et MaximumEntropi estimat for koronaens radialpro�l er der opnået fortræ�elige �ts for allesimulationer. Fra disse �ts blev enkeltkæde gyrationsradius og koronaens radial-pro�l fundet, og disse er i meget god overensstemmelse med resultaterne, derblev indsamlet under Monte Carlo simulationerne.På basis af en diagrammatisk fortolkning af det af Pedersen og Gerstenbergforeslået modeludtryk for mi
elle spredningen er en formalisme for udregnin-gen af formfaktorer og strukturfaktorer af sammenhængende a
ykliske polymerstrukturerer blevet udviklet. Mi
eller med en arbitrær kernegeometri, forgrenedepolymere og 
opolymerstjerner er nogle af de strukturere, hvis spredning kanudregnes med formalismen. Formalismen kan inkludere ex
luded volume veksel-virkninger på samme niveau som for en lineær kæde, og et udtryk for form-faktoren af 
opolymer med ex
luded volume vekselvirkninger gives. Ved hjælpaf denne formalisme er formfaktoren for en triblok
opolymerstjerne udregnetmed og uden ex
luded volume vekselvirkninger. Disse udtryk er blevet �ttet tilMonte Carlo simulationsresultater for spredningen uden ex
luded volume veksel-virkninger for f = 2; 3 og 6 arme, og med ex
luded volume vekselvirkninger forf = 2. Under simulationerne blev spredningen indsamlet for hele stjernen samtfor de tre blokke svarende til spredningsbidragene for �re forskellige kontraster,og alle �re kontraster blev �ttet samtidigt. Disse �ts viser en fortræ�elig over-ensstemmelse mellem simulerede spredningsresultater og de teoretiske udtryk.



Chapter 3Introdu
tionComplex �uids exhibit many interesting phenomena. They have stru
tures ona mesos
opi
 s
ale, and the presen
e of these stru
tures yield a surprising re-sponse to the presen
e of external �elds su
h as shear, ele
tri
al, or magneti
�elds. Some examples are for instan
e shear-indu
ed birefringen
e of polymerssolutions, ele
tri
al �eld-indu
ed birefringen
e of liquid 
rystals, and the order-ing of ferro-liquids in external magneti
 �elds [1, 2, 3℄. Complex �uids 
an alsobehave as solids on short time s
ales, and as �uids on long time s
ales. Examplesof 
omplex �uids are mud, toothpaste, paint, shampoo, and liquid 
rystals aswell as many biologi
al �uids su
h as 
ell 
ytoplasm and blood. Thus 
omplex�uids are quite 
ommon, but their behaviour are qualitatively di�erent from�simple� �uids.Complex �uids 
onsisting of a 
olloid suspension of large parti
les or mole
ules
an self-assemble in numerous stru
tures, depending on the shape of the 
olloidalparti
les or mole
ules and their intera
tions. Solutions and melts of polymersand 
opolymers o�er a system, where the ar
hite
ture and 
hemi
al propertiesof the polymers 
an be designed and numerous stru
tures 
an be obtained as aresult [4℄.A 
opolymer 
onsists of a sequen
e of 
hemi
ally di�erent blo
ks of poly-mers joined end-to-end forming a long linear mole
ule. Copolymers are unableto undergo ma
ros
opi
 phase separations, but mi
ro-phase separations are pos-sible. The stru
ture of the mi
ro-phase separated domains are determined by aminimisation of the surfa
e energy between domains of di�erent blo
ks, how-ever, the entropy of stret
hing polymers 
hains also a�e
ts the shape of thesedomains[5℄. Diblo
k 
opolymers 
an also self-assemble into mi
ellar aggregatesin a solvent that is sele
tive for one blo
k [6℄. Many possible 
ore geometriessu
h as spheri
al, ellipti
al, and 
ylindri
al 
ores are possible. Spheri
al mi-
elles 
an, furthermore, order in 
rystalline stru
tures su
h as body-
enteredor fa
e-
entered 
ubi
 
rystals depending on the range of the mi
elle-mi
elleintera
tions, and 
ylindri
al mi
elles 
an order into hexagonal rod stru
tures[7, 8℄.Polymers are also used for modifying the me
hani
al, 
hemi
al or biologi
alproperties of solid or liquid surfa
es [9, 10, 11℄. Diblo
k 
opolymers, for instan
e,provides a ma
romole
ular analogy of amphiphili
 mole
ules [12℄, and 
an be7



8 CHAPTER 3. INTRODUCTIONused to modify the properties of a liquid surfa
e or by adsorbing at a solidinterfa
e.Grafting polymers onto the surfa
e of a 
olloid aggregate introdu
es a re-pulsive intera
tion between aggregates, whi
h inhibit 
oagulation and/or 
oales-
en
e behaviour. The repulsive intera
tions is due to the fa
t that the polymer
on�gurational degrees of freedom is redu
ed if it is squeezed between two 
ol-loidal aggregates. This leads to a de
rease of the 
on�gurational entropy [13℄,and is the 
ause of the repulsive intera
tions between the 
olloidal parti
les.Tethering polymers to a surfa
e 
an a
t as a lubri
ant or an adhesive betweensurfa
es [14, 15℄, and tethered polymers 
an in
rease bio
ompatibility and in-hibit protein adsorption [10, 16℄. Lipid vesi
les (liposomes) prote
ted by diblo
k
opolymers have also been suggested for drug delivery systems. Drug mole
ules,dissolved in the lipid layer or the interior, are prote
ted from enzymati
 degra-dation by the 
opolymers, and from being �ltered from the blood stream in theliver or kidneys [17℄.Advan
es in polymer synthesis allow good 
ontrol over the polymerisationpro
ess, and existing te
hniques 
an realize many polymer ar
hite
tures su
h asthose shown in �gure 3.1. Stru
tures 
an be mapped out in terms of stru
turalphase-diagrams by systemati
ally varying the polymer ar
hite
ture and exper-imental parameters su
h as 
on
entration, solvent quality, and temperature.These 
an be used to formulate and test theories that relate polymer ar
hi-te
ture and experimental parameters to stru
ture, and test theories predi
tingthe ma
ros
opi
 me
hani
al, rheologi
al, ele
tri
 or magneti
 properties of the
omplex �uids. This yields information about the basi
 physi
al pro
esses thatleads to the emergen
e of stru
tures in 
omplex �uids, and an understandingthe physi
al pro
esses allows the stru
ture of 
omplex �uids to be designed forpra
ti
al appli
ations.Various te
hniques exist for probing the stru
ture of 
omplex �uids [18℄, how-ever, small-angle X-ray and neutron s
attering te
hniques are ideally suited forobtaining detailed stru
tural information. Unfortunately s
attering te
hniquesdo not yield a pi
ture of the stru
ture su
h as real spa
e methods like mi-
ros
opy, nor is there in general an easy way of inverting the results from as
attering experiment to obtain the stru
ture. This is in a very real sense due toa very 
omplex and 
onvoluted dependen
e of the measured s
attering on thestru
ture of the 
omplex �uid.One way to infer stru
ture from s
attering data is to �t stru
tural modelsto the observed s
attering. Ea
h model represents the expe
ted s
attering froman analyti
al model of a stru
ture or is the result of a parametrisation of resultsfrom simulations. This provides a �tool box� of models that 
an be �tted to theexperimental data, i.e. free the model parameters must be optimised in orderfor the model s
attering to agree with the experimentally observed s
attering.If a good agreement is obtained, it suggests that the stru
ture present in thesample is the same stru
ture as that represented by the model, and that theparameters estimated by the �t pro
edure are most likely to 
orrespond to the�real� values of those parameters [19℄.The aim of the present thesis is to present and validate an expression for thes
attering from dilute solutions of diblo
k 
opolymer mi
elles with a spheri
al



3.1. POLYMERS 9
ore. Monte Carlo simulations of a mesos
opi
 mi
elle model has been used toobtain the s
attering that would be obtained from an almost ideal s
atteringexperiment. Hen
e, any s
attering expression 
an be 
ompared to the s
atter-ing from a mi
elle in the ideal 
ase, where in prin
iple the s
attering is exa
t(ex
ept for statisti
s due to a �nite number of samples) and the real values ofall parameters are known in advan
e.3.1 PolymersPolymers are string-like obje
ts 
onsisting of a long sequen
e of monomers. Themost important property of a polymer is the 
onformational entropy asso
i-ated with the many internal degrees of freedom of a 
hain [4℄. The entropi
allyfavoured 
on�guration of a polymer is that of a random walk, however, the
on�guration is also in�uen
ed by the di�eren
e between monomer-monomerand monomer-solvent intera
tions. These are e�e
tively the same in a �-solventand as a result monomers are approximately non-intera
ting, in whi
h 
ase the
on�guration is only determined by the entropy.In a bad solvent monomer-solvent intera
tions are very unfavourable 
om-pared to monomer-monomer intera
tions, and as a result 
ompa
t �
ollapsed�polymer 
on�gurations are energeti
ally favourable. However, in a good solventmonomer-solvent intera
tions are negligible 
ompared to monomer-monomer in-tera
tions in whi
h 
ase the ea
h monomer will be surrounded by a volume fromwhi
h other monomers are ex
luded. Hen
e the name �ex
luded volume� inter-a
tions. The preferred 
on�guration of a polymer in a good solvent will be thatof a self-avoiding random walk, and the 
hain will swell relative to an non-intera
ting random walk. In the limit where the monomer-monomer potential
an be regarded as a hard-sphere potential, the enthalpy is either in�nite or zero,and the free energy is independent of temperature i.e. an athermal solvent.Varying the polymer 
on
entration in a good solvent yield three qualitativedi�erent regimes [20, 21℄: dilute solution, semi-dilute solution, and a melt. Ina dilute solution ea
h polymer is far from other polymers and the solution 
anbe regarded as an ideal gas of hard spheres, where ea
h hard sphere has a
hara
teristi
 size given by the radius of gyration of the polymer. The solutionenters the semi-dilute regime when the polymer density ex
eeds the overlapdensity, whi
h is de�ned by the inverse of the volume o

upied by one polymer
hain in an unperturbed 
on�guration. Polymers will inter-penetrate ea
h otherforming a transient network of intermeshed 
hains above the overlap density.The 
hara
teristi
 
hain size of dilute solutions is repla
ed by a 
hara
teristi
mesh size or 
orrelation length in semi-dilute solutions, whi
h de�nes a lengths
ale above whi
h no 
orrelations due to polymer 
onne
tivity persists, andbelow whi
h intera
tions between di�erent 
hains are negligible. If no solventis present, i.e. the volume fra
tion of polymer is unity, polymers will be in amelt state. The preferred 
hain 
onformation will be that of a non-intera
tingrandom walks as predi
ted by Flory [22℄. This 
an be understood as follows: ina good solvent the enthalpy 
ontribution from monomer-monomer intera
tionsde
reases as the 
hain swells, however, in a melt swelling would not de
rease



10 CHAPTER 3. INTRODUCTIONthe number of the monomer-monomer 
onta
ts as there is no free spa
e toswell into. As a result the enthalpy is una�e
ted by swelling, and the preferred
on�gurations will be the non-intera
ting random walk 
on�gurations favouredby the entropy .3.2 Tethered 
hainsPolymers 
an be tethered to a surfa
e by one end, thus forming a di�use layeron the surfa
e [9℄. Some tethered 
hain stru
tures are shown in �gure 3.2. Theequilibrium properties of a tethered polymer layer at an impenetrable surfa
ein a good solvent follow from the balan
e between entropi
 for
es and ex
ludedvolume intera
tions. The latter favour a state with a minimum of monomer-monomer 
onta
ts, e.g. a state with a low density of monomers. Su
h a state
an be a
hieved by in
reasing the available volume per 
hain, i.e. by the 
hainstret
hing away from the surfa
e. Entropi
 for
es, however, will tend to maximisethe number of available 
hain 
on�gurations by opposing the 
hain stret
hingand by shifting the 
orona away from the surfa
e to some extent. If the inter-fa
e is 
onvex a 
hain 
an get a relative larger available volume by stret
hing
ompared to �at interfa
es. As a result, surfa
e 
urvature has a large impa
t onthe monomer density distribution away from the surfa
e, and tends to redu
e
hain stret
hing for 
onvex surfa
es.At low surfa
e 
overage, polymers will have a mushroom like shape dueto surfa
e expulsion, however, at very high surfa
e 
overage ex
luded volumeintera
tions dominate and 
hains will be strongly stret
hed forming a polymeri
brush. A broad 
rossover region of intermediate surfa
e 
overages exists betweenthese limits and experiments are typi
ally 
arried out in this regime.Many theoreti
al te
hniques have been applied to the problem of tethered
hains on a planar or 
urved surfa
es. S
aling theories treat polymers as 
losepa
ked blobs with a size given by the lo
al 
orrelation length. It is impli
itlyassumed that the lo
al polymer 
on
entration throughout the polymer layer isin the semi-dilute regime. From the blob des
ription, density pro�les 
an beobtained as well as predi
tions of the dependen
e of the width of the tethered
hain layer as fun
tion of 
hain length and surfa
e 
overage. Daoud and Cotton[23℄ made a model for the pro�le of star polymers using a blob des
ription, whi
hwas modi�ed by Halperin to des
ribe small �nite size 
ores [24℄.Self-
onsistent �eld (SCF) methods [25, 26, 27, 28, 29℄ 
an be derived fromthe statisti
al physi
s of 
hain mole
ules [30℄. From SCF methods the pro�les
an be obtained for moderately high surfa
e 
overages and weakly intera
ting
hains. SCF methods break down in the presense of large density �u
tuations,for instan
e at lower surfa
e 
overages. In the limit of extreme stret
hing lateral�u
tuations are weak and the path of a polymer 
hain 
an be mapped ontoa 
lassi
al me
hani
al problem of a falling parti
le in a potential as originallyshown by Semenov [31℄.The thermodynami
s of polymers layers at �at interfa
es has been inves-tigated by Carignano and Szleifer [10, 32, 33℄ using a single-
hain mean �eldtheory. This approa
h in
ludes all the intra-
hain intera
tions within the 
ho-



3.2. TETHERED CHAINS 11sen 
hain model, and a mean �eld approa
h is used for solvent mole
ules andother 
hains. This approa
h provides the osmoti
 pressure pro�le away from thesurfa
e and pressure-area isotherms.Tethered polymers at �at and 
urved interfa
es have been investigated byMole
ular Dynami
s and Monte Carlo methods [34, 35, 36℄. Computer simu-lations have primarily been used for obtaining density pro�les as fun
tion ofvarious parameters. Common for all these approa
hes, at least as they are 
ur-rently applied, are that none of them produ
e expressions that 
an be used foranalysing experimental s
attering data. However, Monte Carlo and Mole
ularDynami
s simulations 
an easily be modi�ed to sample s
attering 
orrespondingto an ideal s
attering experiment with 
ontrast variation.
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Figure 3.1: Di�erent polymer stru
tures (from [4℄).
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Figure 3.2: An illustration of some tethered 
hain stru
tures (from [9℄).
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Chapter 4TheoryThis 
hapter introdu
es the theoreti
al ba
kground for the summary of arti-
les, and the arti
les themselves. First basi
 s
attering theory in
luding 
ontrastvariation te
hniques and the s
attering from a solution of di�erent parti
les areintrodu
ed. The relation between s
attering, 
orrelation fun
tions, and ther-modynami
s is derived. Two se
tions derive expressions for the s
attering fromdilute and semi-dilute polymer solutions. The main topi
 of the thesis is s
atter-ing from aggregates in solution espe
ially mi
ellar aggregates and models of themi
ellar s
attering, and this is introdu
ed after a se
tion on 
ore-shell models.The 
hapter is 
on
luded with a brief remark on the interpretation of s
atteringdata, and a heuristi
 introdu
tion to Maximum Entropy methods. For furtherinformation the reader is referred to the literature on s
attering theory andappli
ations to �uids and soft 
ondensed matter, see e.g. [18, 37, 38, 39℄.4.1 Basi
 s
attering theoryIn a general s
attering experiment a beam of in
ident radiation illuminates avolume of matter, and the s
attered radiation is dete
ted at a 
ertain anglerelative to the transmitted beam. The observed s
attering depends on the in-tera
tion between the beam and matter within the s
attering volume. Typi
albeams 
onsist of laser light, X-rays from a syn
hrotron or 
onventional sour
e,or neutrons from a rea
tor or spallation sour
e.The in
ident radiation is represented as a plane wave with a wave ve
tor kiand the s
attered radiation is approximated by a plane wave with wave ve
torks, whi
h is de�ned by the position of the dete
tor relative to the transmittedbeam. Assuming that the s
attering pro
ess is elasti
 i.e. k = jkij = jksj, andthat the s
attering is weak su
h that multiple s
attering events 
an be negle
ted,it follows from quantum me
hani
s using the �rst Born approximation [37, 40℄that the dete
ted intensity is given by the di�erential 
ross se
tiond�d
 / jhksjU(r)jkiij2 :Here U(r) is the intera
tion potential between radiation and matter. Assum-ing that the potential is 
aused by many di�erent s
atterers lo
ated at positions15



16 CHAPTER 4. THEORYrj. Then the potential 
an be expressed as the sum U(r) = Pj Uj(r � rj),where Uj is the intera
tion potential between the j'th s
atterer and the in
identradiation. This yields a matrix elementhksjU jkii =Xj Uj(q)e�iq�rj ;where the s
attering ve
tor q is de�ned as q = ki�ks. The momentum transferof the s
attering pro
ess is given by �hq. The length of the q ve
tor is dire
tlyrelated to the angle 2� between the transmitted beam and the s
attered beammeasured at the dete
tor position as jqj = 2k sin(�), and the wavelength of thein
ident radiation is � = 2�=k. The s
attering due to stru
tures with a longerlength s
ale than the in
ident radiation is lo
ated very 
lose to the transmittedbeam. A

ordingly, s
attering te
hniques of measuring stru
tures longer lengths
ale than the in
ident radiation are known as small-angle s
attering te
hniques.Neutrons are s
attered from the atom nu
lei, and it is a good approximationto assume that the spatial extension of the potentials is small 
ompared to thewavelength of the in
ident radiation, in whi
h 
ase the s
atterers 
an be regardedas point-like, and the neutron intera
tion potential 
an be approximated by adelta fun
tion Uj(r) = 2��h2m bjÆ(r);where bj is the s
attering length. This potential is also known as the Fermipseudo-potential. The s
attering length of neutrons has a 
ompli
ated depen-den
e on the atom number, isotope and spin state, and 
an even be negative.The s
attering from a number of point-like s
atterers be
omesd�d
(q) / ������Xj bje�iq�rj ������2 :By de�ning the s
attering length density �(r), the sum is repla
ed by anintegral over the s
attering volume and the result isd�d
(q) / ����Z dr�(r)e�iq�r����2 :The dis
rete expression 
an easily be retrieved from the 
ontinuum des
rip-tion using a density de�ned as �(r) =Pj bjÆ(r� rj).The observed s
attering is the square of the Fourier transform of the s
atter-ing length density distribution. Any periodi
 stru
ture, su
h as 
rystal, will havea large Fourier 
omponent for the 
orresponding q ve
tor, and this will give riseto a strong s
attering. As a result a very important appli
ation for s
atteringte
hniques has been the determination of 
rystal stru
tures. A 
rystal 
an berigidly mounted in a s
attering experiment, however, if the s
atterers are poly-mers or aggregates suspended in a solvent then many di�erent 
on�gurationsof s
atterers are possible. Let ��(r) denote the s
attering length density whenthe system is in the �'th state, where the state is used to 
olle
tively denote
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on�guration of mole
ules or aggregates. hX�(r)i� denotes a 
on�gurationalaverage over all the possible states � of the quantity X�. Translational or ori-entational averages, will be denoted by subs
ript �t� and �o�, respe
tively. ThushX�(r1; r2)i�to is the 
on�gurational, translational, and orientational averageof the fun
tion X�(r1; r2), while a translational and orientational average isdenoted hX�(r)ito.For parti
les, mole
ules or aggregates suspended in a solvent the 
on�gura-tional, orientational, and translational average of the of the s
attering isd�d
 / *����Z dr��(r)e�iq�r����2+�to :For 
onvenien
e the s
attering length density is repla
ed by ��(r) = ���(r)+�solvent where ���(r) is the ex
ess s
attering length density of the s
atterersrelative to that of the solvent �solvent. The ex
ess s
attering length density isgiven by ���(r) =Pi�bi�(i)� (r), where �(i)� (r) is the number density of the i'thspe
ies of s
atterer and �bi the ex
ess s
attering length of that spe
ies, where as
atterer 
ould be an atom, a mole
ule or an aggregate of mole
ules. Separatingthe 
ontributions due to spe
ies and solvent the s
attering isd�d
(q) / *�����Xi �bi Z dr�(i)� (r)e�iq�r + �solvent Z dre�iq�r�����2+�to :De�ning the Fourier transform of the density distribution as�(i)� (q) = Z dr�(i)� (r)e�iq�r;where integrals are restri
ted to the s
attering volume V , and using the de�ni-tion of the delta fun
tion the di�erential s
attering 
ross se
tion be
omes/ *�����Xi �bi�(i)� (q) + �solventV Æ(q)�����2+�to :Hen
e, the s
attering due to the solvent will be 
on�ned to the forwarddire
tion q = 0, where it is indistinguishable from the transmitted part of thein
ident beam, and as a result the Æ(q) term 
an be ignored. In the rest ofthis 
hapter the argument of a fun
tion is used to distinguish between fun
tionsand their Fourier transforms, su
h that f(q) denotes the Fourier transform of afun
tion f(r).Using neutron s
attering te
hniques it is possible to sele
tively 
an
el s
at-tering 
ontributions from 
ertain spe
ies by mat
hing the solvent s
atteringlength density to the s
attering length density of that spe
ies. S
attering 
on-trast 
an be enhan
ed by 
hanging the isotope 
omposition of a spe
ies, forinstan
e by substituting hydrogen atoms with deuterium as often done for poly-mers or biomole
ules. This 
an be used for investigating the stru
ture of an ob-je
t, that 
onsists of di�erent types of s
atterers for instan
e di�erent spe
ies ofpolymer mole
ules, su
h as a star polymer or a mi
elle 
onsisting of blo
k 
opoly-mers [41℄, a 
omplex biologi
al stru
ture su
h as a virus [42℄ or a biomole
ule
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h as a ribosome, whi
h 
an 
onsist of both RNA, DNA, and proteins. Thisis the basis for neutron 
ontrast variation studies [18, 43, 44℄, whi
h yield moreinformation about the stru
tural arrangements of 
onstituent spe
ies 
omparedto what 
an be obtained by, for instan
e, X-ray te
hniques.4.2 Form and Stru
ture fa
torNegle
ting the forward s
attering 
ontribution due to the solvent the di�erential
ross se
tion for neutron s
attering is given byd�d
 / *�����Xi �bi�(i)� (q)�����2+�to :If the sample 
onsists of a number M obje
ts suspended in a liquid, su
hthat they lo
ated at R�i , in the 
on�guration denoted by �, the s
attering lengthdensity distribution is ��(r) = MXi=1 �i�(i)� (r�R�i );where �(i)(r) is the density distribution and �i = �bi R dr�(i)(r) is the totalex
ess s
attering length of the i'th obje
t, in whi
h 
ase it is easy to derived�d
(q) = 1M *����� MXi=1 �i�(i)� (q)e�iq�R�i �����2+�to (4.1)= 1M * MXi=1 �2i �(i)� (q)�(i)� (�q) + 2 MXi>j �i�j�(i)� (q)�(j)� (�q)e�iq�(R�i �R�j )+�to :Assuming that the position of an obje
t is not 
orrelated with its orientation,and that the orientation of di�erent obje
ts is un
orrelated, the average 
an berewritten as1M MXi=1 D�2i �(i)� (q)�(i)� (�q)E�o+ 2M MXi>jh�i�(i)� (q)i�oh�j�(j)� (q)i�o De�iq�(R�i �R�j )E�to :The form fa
tor of the i'th obje
t is de�ned as Fi(q) = D�(i)� (q)�(i)� (�q)E�o,the form fa
tor amplitude as Ai(q) = h�(i)� (q)i�o, and the 
enter-to-
enter stru
-ture fa
tor as Hij(q) = Dexp[�iq � (R�i �R�j )℄E�to. Using these abbreviationsthe s
attering fun
tion 
an be stated asd�d
(q) = 1M MXi=1 �2i Fi(q) + 2M MXi>j �i�jAi(q)Hij(q)Aj(q): (4.2)The form fa
tor des
ribes the s
attering from two sites within the sameobje
t, while the se
ond term des
ribes the interferen
e s
attering from sites
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ts. If the positions of the di�erent obje
ts are un-
orrelated as it will be in a very dilute solution, then Hij(q) = 0 and only thes
attering due to the form fa
tor is observed. The se
ond term is a produ
tof Fourier transforms, and by virtue of the Fourier 
onvolution theorem this
orresponds to a 
onvolution of distributions. Thus the se
ond term 
an be in-terpreted in real spa
e as the 
onvolution of three distan
e distributions: Ai(r),whi
h is the distribution of distan
es between sites in obje
t i and its 
enter,and Hij(r) is the distribution of distan
es between the 
enter of obje
t i andj, and a distribution of distan
es between the 
enter and sites within obje
t j.The generalisation of this interpretation is presented in arti
le IV.In the spe
ial 
ase where only one type of obje
t is present, eq. (4.2) yieldsd�d
(q) = F (q)Sapp(q);where the apparent stru
ture fa
tor is Sapp(q) = A2(q)H(q)=F (q) + 1. H(q)is the 
enter-to-
enter stru
ture fa
tor, i.e. the Fourier transform of 
enter-to-
enter distan
es between di�erent obje
ts. In the spe
ial 
ase where the obje
tsare spheri
ally symmetri
 F (q) = A2(q) (see se
tion 4.9) and the apparentstru
ture fa
tor is Sapp(q) = H(q)+1. The form fa
tor 
arries information aboutdistan
es within a obje
t and thus indire
tly intera
tions within that obje
t,whereas the stru
ture fa
tor 
arries information about the distan
es betweendi�erent obje
ts, and thus 
arries information about obje
t-obje
t intera
tions.Using the Ornstein-Zernike relation the stru
ture fa
tor 
an be 
al
ulated for aknown pair-potential between obje
ts given a suitable 
losure relation [39℄.In general the s
attering length density depends on the intera
tion betweenthe in
ident radiation and the atoms in the sample volume [18, 43℄. Light andX-ray photons are s
attered from ele
trons, while neutrons, on the other hand,intera
t with the atomi
 nu
lei via weak short-ranged nu
lear for
es. It is alsopossible to de�ne s
attering length densities in the 
ase of light and X-ray s
at-tering, and the result is that an equation exa
tly as that of neutron s
attering isobtained, ex
ept with di�erent expressions for the s
attering lengths. For X-raysthe s
attering length bi is the atomi
 form fa
tor of the i'th atom and depends onq, while �(r) is proportional to the ele
tron density distribution in the sample.The interpretation of the s
attering length for light s
attering is more 
omplex,but it is related to the polarizability of the s
atterers, and this 
an be expressedusing the derivative of the index of refra
tion with respe
t to 
on
entration.In order to simplify the notation it will be assumed that only one spe
ies ofs
atterer is present, in whi
h 
ase a s
attering fun
tion S(q) 
an be de�ned asS(q) = 1N *����Z dr��(r)e�iq�r����2+�to ; (4.3)where N is the number of s
atterers given by N = R dr��(r). The number ofs
atterers is assumed to be �xed and independent of state �. The s
atteringfun
tion is independent of the type of radiation that is used. The di�erential
ross se
tion is related to the s
attering fun
tion by the ex
ess s
attering length,whi
h depends on the type of radiation, as
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 / N�b2S(q)At this level no assumptions have been made about the nature of the s
at-terers. They 
ould be aggregates, polymers mole
ules, or individual atoms. Norhas any assumptions been made about the stru
tural arrangements of obje
ts.4.3 Correlation fun
tionsThis se
tion introdu
es 
orrelation fun
tions of densities 
orresponding to a sin-gle spe
ies of s
atterer, and no assumptions are made regarding the nature ofthe s
atterers. They 
ould be atoms, mole
ules, or aggregates. The 
orrelationfun
tions will be related to the s
attering fun
tion and later to a general statis-ti
al physi
al property. Results presented in the following se
tions are 
orre
teven in the absen
e of orientational and translational averages, and as a resultthe these averages are des
ribed in a separate se
tion.Expanding the norm square in the s
attering expression eq. (4.3) the s
at-tering fun
tion 
an be rewritten asNS(q) = �Z dr1��(r1)eiq�r1 � Z dr2��(r2)e�iq�r2�� = h��(q)��(�q)i� ;here ��(q) is the Fourier transform of the number density distribution in the �'thstate. Using the fa
t that the 
on�gurational average and Fourier transformationare both linear operations and 
an be inter
hanged, the s
attering fun
tion 
anbe rewritten as NS(q) = Z dr1dr2 h��(r1)��(r2)i� eiq�(r1�r2)� Z dr1dr2C(r1; r2)eiq�(r1�r2) = C(q);where C(r1; r2) � h��(r1)��(r2)i� de�nes the density-density 
orrelation fun
-tion, and C(q) = h��(q)��(�q)i� its Fourier transform. The s
attering fun
tionS(q) is given by the Fourier transformed density-density 
orrelation fun
tionC(q). The 
orrelation fun
tion 
ontains information about to what extend thedensity at one point r1 is �related to� the density at another point r2. In theabsense of intera
tions, either dire
t or indire
t, between parti
les at the two po-sitions, they will be statisti
ally independent. Thus 
orrelations 
an be regardedas a measure of the stru
tures imposed by intera
tions between parti
les. The
orrelation fun
tion be
omes C(r1; r2)! h��(r1)i� h��(r2)i� for jr1 � r2j ! 1as intera
tions are assumed to be of a short range. This assumption is not 
orre
tfor 
rystalline materials, where there is long ranged order.The density distribution of the �'th state ��(r) 
an be expressed in terms ofthe 
on�gurationally averaged density �(r) = h��(r)i� and a density �u
tuationÆ��(r) de�ned as ��(r) = �(r) + Æ��(r). Inserting this in the de�nition of the
orrelation fun
tion and expanding using hÆ��(r)i� = 0 yields



4.4. STATISTICAL PHYSICS 21C(r1; r2) � h��(r1)��(r2)i� = �(r1)�(r2) + hÆ��(r1)Æ��(r2)i� :The density 
orrelation fun
tion is the sum of two 
ontributions, one origi-nating from the produ
t of average densities, and another originating from the�u
tuations of individual 
on�gurations about the average density. The den-sity �u
tuation 
orrelation fun
tion (also known as the Ursell fun
tion) is herede�ned as D(r1; r2) � hÆ��(r1)Æ��(r2)i� = C(r1; r2)� �(r1)�(r2);for large distan
es the �u
tuation 
orrelation fun
tion 
onverges to zero. Insert-ing the 
orrelation fun
tion in the expression for the s
attering fun
tion yieldsNS(q) = Z dr1dr2C(r1; r2)eiq�(r1�r2);= ����Z dr�(r)eiq�r����2 + Z dr1dr2 hÆ��(r1)Æ��(r2)i� eiq�(r1�r2);= �(q)�(�q) +ND(q):The s
attering fun
tion has two 
ontributions, one is the 
on�gurationallyaveraged density distribution j�(q)j2, and another due to density �u
tuationsabout the average density, this latter 
ontribution is given byD(q) = 1N hÆ��(q)Æ��(�q)i� :The density �u
tuation 
orrelations are typi
ally short ranged, and theFourier integral 
an be regarded as an integral over a number of 
ells withsome 
hara
teristi
 size. The Fourier integral will be proportional to the num-ber of 
ells, and the de�nition of the �u
tuation s
attering in
ludes an inversefa
tor N , su
h that it is independent of number of s
atteres in the large volumelimit, i.e. D(q) be
omes an intensive quantity.4.4 Statisti
al Physi
sIn order to understand the physi
al information 
ontained in the �u
tuation 
or-relation fun
tion, a relation between 
orrelation fun
tions and statisti
al physi
shas to be established (the following derivation is inspired by [38℄). An averageover possible states 
an be expressed ashX�i� = P�X�e��H�P� �e��H� ; (4.4)where H� is the Hamiltonian of system when it is in the �'th state and � =1=(kbT ), where kb is the Boltzmann 
onstant, and T is the absolute temperature.We are interested in ensemble averages of densities and 
orrelation fun
tions



22 CHAPTER 4. THEORYbetween densities, the grand 
anoni
al ensemble whi
h depend on the volumeV , temperature T , and an external 
hemi
al potential �eld �(r) is a good 
hoi
e.The grand 
anoni
al partition fun
tion is given by�[�(r)℄ =X� exp���H� + � Z dr��(r)�(r)� :How this sum is evaluated, and how the Hamiltonian and the number densityof a state �� for an a
tual polymer or polymer aggregate is expressed is outsidethe s
ope of this thesis (see e.g. [45, 46, 47, 48℄). Variational 
al
ulus [49℄ 
anbe used to 
al
ulate the response of the grand 
anoni
al partition fun
tion toin�nitesimal variations of the external 
hemi
al potential, whi
h shows it 
anbe used as a generating fun
tion for 
orrelation fun
tions. For exampleÆ�Æ�(r1) ln�[�(r)℄ = 1�� ÆÆ�(r1)�[�(r)℄= 1�X� exp���H� + � Z dr��(r)�(r)� ÆÆ�(r1) Z dr��(r)�(r):Using the de�nition Æ�(r)=Æ�(r1) = Æ(r � r1) [39, 38℄ in the integral, thefollowing result is obtained1�[�(r)℄X� ��(r1) exp���H� + � Z dr��(r)�(r)� ;whi
h for �(r) = 0 redu
es toP� ��(r1) exp (��H�)P� exp (��H�) = h��(r1)i� :The linear response of ln�, i.e. the grand potential, to a variation in theexternal 
hemi
al potential, is the 
on�gurational average of the density. Thefollowing relations 
an be dedu
ed with relative ease in a similar mannerÆ�Æ�(r1) ln�[�(r)℄�����=0 = h��(r1)i� = �(r1); (4.5)1�[�(r)℄ Æ�Æ�(r1) Æ�Æ�(r2)�[�(r)℄�����=0 = h��(r1)��(r2)i� = C(r1; r2);and Æ�Æ�(r1) Æ�Æ�(r2) ln�[�(r)℄�����=0 = hÆ��(r1)Æ��(r2)i� = D(r1; r2): (4.6)The derivation shows that the average density, the density 
orrelation fun
-tion, and the density �u
tuation 
orrelation fun
tions 
an all be regarded asfun
tionals of the external 
hemi
al potentials, whi
h in the � = 0 limit 
orre-sponds to the previously de�ned 
orrelation fun
tions. In parti
ular a 
ompari-son of eq. (4.5) and eq. (4.6) shows that the following relation is valid



4.4. STATISTICAL PHYSICS 23�(r1; r2) � Æ�(r1)�Æ�(r2) = D(r1; r2): (4.7)�(r1; r2) is a generalised sus
eptibility as it relates response of the averagedensity at r1 to a 
hange in the external 
hemi
al potential at r2, and this isidenti
al to the density �u
tuation 
orrelation fun
tion. This follows dire
tlyfrom the de�nition of the grand 
anoni
al partition fun
tion, and in generalthe linear response of the density of an extensive parameter with respe
t to its
onjugate �eld is given by the �u
tuation 
orrelations of that extensive density.This type of relation is known as a �u
tuation-dissipation theorem [38, 39, 50℄.A 
onne
tion to the isothermal 
ompressibility follows when Taylor expand-ing the density in the external 
hemi
al potential �eld as�[r1;�(r)℄ = �[r1;� = 0℄ + Z dr2 ÆÆ�(r2)�[r1;�(r)℄�����(r)=0 Æ�(r2) + � � �= �[r1;� = 0℄ + � Z dr2D(r1; r2)Æ�(r2) + � � � :In the spe
ial 
ase where the 
hemi
al potential is a small 
onstant Æ�(r2) =Æ�, this be
omes��(r1)�� = �(r1; Æ�) � �(r1;� = 0)Æ� = � Z dr2D(r1; r2) + � � � ;using the de�nition for D(q) and the mean density � = N=V = V �1 R dr1�(r1)the equation 
an be rewritten as���� = 1V Z dr1��(r1)�� = �V Z dr1dr2D(r1; r2) = ��D(q = 0):The response of the average density to a 
hange in a 
onstant external 
hem-i
al potential is given by the q = 0 limit of the density �u
tuation 
orrelationfun
tion. This result 
an 
an be related to the isothermal 
ompressibility �T ,whi
h is de�ned as �T � � 1V �V�p ����T;N = ��2 ���� ����T :Here the Gibbs-Duhem relation V dp = Nd�+ SdT and � = N=V was usedto rewrite the expression. The isothermal 
ompressibility 
an be related to theFourier transform of the density �u
tuation 
orrelation fun
tion as�T = ���1D(q = 0):The osmoti
 pressure � 
an be expanded in the density in a virial expansion�� = �+A2�2 +A3�3 + � � � ;where the virial 
oe�
ients A2; A3; : : : 
ontains information about intera
tions.If the parti
les are non-intera
ting, e.g. as they are in an ideal gas, then A2 =



24 CHAPTER 4. THEORYA3 = : : : = 0 and the expansion redu
es to the ideal gas law. The isothermal
ompressibility 
an be expressed using the virial expansion as follows�T = ������ ��1 = �� �1 + 2A2�+ 3A3�2 + : : :��1 :Hen
e, by obtaining the forward s
attering due to density �u
tuation 
orre-lations, the virial 
oe�
ients 
an be obtained as1D(q = 0) = 1 + 2A2�+ 3A3�2 + : : : = 1 + 2A2(�)�: (4.8)Here the apparent se
ond virial 
oe�
ient A2(�) = A2 + 32A3� + � � � wasused to absorb all higher order terms. By doing series of s
attering experimentsat in
reasing densities, and extrapolating to obtain the forward s
attering, thevirial 
oe�
ients 
an in prin
iple be obtained [51, 52℄. In pra
ti
e multiple s
at-tering sets an upper limit for the densities that 
an be probed in parti
ular forlight s
attering.The 
on�gurational average of a polymer solution is a homogeneous densitydistribution, as a result the s
attering due to the average density is in the forwarddire
tion, and all the observed s
attering will be due to the density �u
tuation
orrelation fun
tion, and as a result the observed s
attering 
an extrapolated toq = 0 to yield the osmoti
 
ompressibility ��=�� [51, 20℄.4.5 Positional and orientational averagesObje
ts suspended in a liquid medium are not �xed, and as a result of thistranslationally invarian
e, the 
orrelation fun
tion C(r1; r2) 
an only dependon the relative ve
tor C(r2 � r1) = hC(r1; r2)it. Nor is there a �xed orienta-tion, as a result of this rotational invarian
e the 
orrelation fun
tion 
an onlydepend on the length of the relative ve
tor as C(jr2 � r1j) = hC(r2 � r1)io =hC(r1; r2)ito. Thus positional and orientational average 
an be performed byinserting V �1Æ(r � jr2 � r1j) in any R dr1dr2 � � � integral, where the fa
tor V �1is due to the translational invarian
e. For instan
ehC(r1; r2)ito � V �1 Z dr1dr2C(r1; r2)Æ(r � jr2 � r1j);= V �1 Z dr1d(r2 � r1)C(r2 � r1)Æ(r � jr2 � r1j):The integrand is independent of r1, and the r1 integral yields a fa
tor ofvolume, that is 
an
elled by the prefa
tor. Expressing the relative ve
tor r2�r1in spheri
al representation yields= Z d(
os �)d�r2C(r) = 4�r2P (r):4�r2P (r) is the pair-distan
e distribution between the obje
ts, e.g. it givesthe number of parti
les in a spheri
al shell between r and r + dr around any



4.6. POLYMER MODELS 25obje
t. The s
attering fun
tion of a �xed radial shell 
an be derived using thesame pro
edure asS(q; r) / V �1 Z dr1dr2C(r1; r2)Æ(r � jr2 � r1j)e�iq�(r2�r1)= Z d(
os �)d� r2P (r)e�iqr 
os � = 4�r2 sin(qr)qr P (r):The s
attering is only a fun
tion of q, and performing the radial integral ofthe pair-distan
e distribution yields the normalised s
attering fun
tion asS(q) = R dr4�r2 sin(qr)qr P (r)N R dr4�r2P (r) :This expression 
an be used for 
al
ulating the s
attering from a polymer
hain when an expression for the pair-distan
e distribution is available.4.6 Polymer modelsPolymers are 
onne
ted string-like obje
ts, whi
h gives rise to 
onne
tivity 
or-relations between di�erent sites on the same 
hain. Polymers also 
onsist ofmonomers, whi
h intera
t with neighbouring monomers, this intera
tion givesrise to rigidity of the polymer ba
k bone, due to the torsional potential ofthe bonds and possible steri
 intera
tions from side groups on the monomers.Monomers far from ea
h other along the 
hain, 
an be spatially 
lose due tothe 
onformation of the polymer 
hain, and this leads to ex
luded volume in-tera
tions. Finally, monomers intera
t with the solvent mole
ules, whi
h meansthat the preferred polymer 
onformations show a strong dependen
e on solventquality and temperature [4℄.A 
hain with 
ontour length L from end-to-end or 
orrespondingly n seg-ments, 
an be regarded as a polymer 
onformation given by a ve
tors Ri whi
hdenote the position of a i'th site/segment along the 
hain. One parameter thatdes
ribes a polymer is the mean square site-site distan
e whi
h is de�ned asDR2ijE = ����R�i �R�j ���2�� ;where the average is over all 
onformations of the polymer, andR�i �R�j denotesthe separation ve
tor from site j to site i when the 
hain is in the �'th 
on�g-uration. From this expression the Hausdor� dimension dH [53℄ 
an be de�nedas qhR2iji / ji� jj 1dH :The �true� Hausdor� dimension is obtained for ji � jj ! 1. For 
hains of�nite length there will be 
orre
tions to the Hausdor� dimension. A spe
ial 
aseof the site-to-site distan
e is the end-to-end distan
e, whi
h is de�ned as



26 CHAPTER 4. THEORYDR2eeE = DjR�0 �R�nj2E� ;Another quantity is the radius of gyration, whi
h is de�ned byDR2gE = * 1n nXi jR�i �R�
mj2+� where R�
m = 1n nXi R�i :The radius of gyration is the mean square distan
e from a site on the 
hainto the 
hain 
enter of mass, and it is a measure of the spatial extension of the
hain. The radius of gyration 
an also be shown to be [54℄DR2gE = 1n2 * nXi;j ���R�i �R�j ���2+� :The most simple model of a polymer is a �exible 
hain model, i.e. a randomwalk. In this model the step length l0 of the random walk must be longer than thelength s
ale over whi
h 
hain orientation information persists in a real polymer,and hen
e the �exible 
hain model only 
aptures large s
ale properties of a realpolymer. The model in
ludes e�e
ts due to 
onne
tivity, however, e�e
ts due to
hain-
hain and 
hain-solute intera
tions are negle
ted, and thus it 
orrespondsto the physi
al 
ase of a polymer in a �-solvent, where polymer intera
tions
an approximately be negle
ted. From basi
 random walk theory it follows thatthe mean square site-to-site distan
e hR2iji = ji � jjl20, where l0 is the segmentlength. In parti
ular hR2eei = l0L, and from this equation it follows that dH = 2.The radius of gyration 
an be shown to be hR2gi = l0L=6 in the limit of manysegments [54℄. From basi
 random walk theory it 
an further more be shownthat the pair-distan
e distribution between sites on a random walk is Gaussiandistribution in the large n limit.The angle � between su

essive segments is free for the �exible 
hain model,�xing this angle introdu
es semi-�exibility in the 
hain, hen
e known as thesemi-�exible 
hain model, this model also negle
ts intera
tions between di�erentsegments. Flory [54℄ has shown that the expressions for the average end-to-enddistan
e and radius of gyration for a �exible 
hain (in the large n limit) are alsovalid for a semi-�exible 
hain, however, with the segment length repla
ed by theKuhn Length b as DR2eeE = Lb; and DR2gE = Lb6 :The Kuhn length b is given byb = 1 + 
os(�)1� 
os(�) l0:The Kuhn length is the length s
ale on whi
h the orientation of subsequentsegments is un
orrelated. e.g. it is the step length of the equivalent �exible 
hain.An approximate expression for the pair-distan
e distribution of a semi-�exible
hain has been derived by Daniels [55, 56℄.
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hain model is obtained from the semi-�exible 
hainmodel in the limit where nb !1, l0 ! 0, and � ! 0 su
h that the number ofstatisti
al independent segments nb = L=b is �xed, in that 
ase [54, 57, 58℄DR2eeE = Lb�1� 12nb �1� e�2nb�� ;and DR2gE =  1� 32nb + 32n2b � 34n3b �1� e�2nb�! Lb6 :These expressions redu
e to the semi-�exible 
hain result in the limit oflarge nb. The previous models were analyti
ally tra
table, however, in
ludingex
luded volume e�e
ts for both a �exible and semi-�exible 
hain model leadsto a model, that is very di�
ult to handle analyti
ally. The ex
luded volumeintera
tion is a very strong and long-ranged intera
tion for polymers in threedimensions. There are three approa
hes whi
h 
an yield results for 
hains withex
luded volume: one is simulation te
hniques su
h as Mole
ular Dynami
s orMonte Carlo simulations, see e.g. [59, 60, 61, 62℄, another approa
h is fun
tionalintegrals [30℄, and a third method is renormalization group te
hniques, see e.g.[46, 48, 63, 64℄.Simulation te
hniques are limited by the 
omputer time it takes to performa simulation, at present, however, it is possible to perform simulations on very
omplex 
hain models. It is also possible to simulate 
hains 
on�ned to pores[65℄, or 
hains tethered to surfa
es. The disadvantage of simulation te
hniquesare that results are obtained for a parti
ular set of parameters, and repeatedsimulation runs sweeping the parameter spa
e are ne
essary before general 
on-
lusions 
an be made just like performing a series of experiments.Fun
tional integrals provide a statisti
al physi
al des
ription of polymer
hains. Polymers are represented as a 
ontinuous 
urve R(l), with an energyfun
tional given by an Edwards Hamiltonian HE[R(l)℄ [66℄. The 
hain partitionfun
tion 
an be obtained by integrating over all 
ontinuous 
urves (hen
e thename fun
tional integrals) where ea
h 
urve is weighted by the Boltzmann fa
-tor exp(�HE[R(l)℄=kbT ). Fun
tional integrals of both �exible and semi-�exible
hains 
an be formulated. A fun
tional integral 
an be reexpressed in terms of adi�usion equation, and the problem of ex
luded volume 
hains 
an be expressedas a self-
onsistent solution of a di�usion equation i.e. a SCF theory [66, 67℄.Renormalization group te
hniques (RGT) atta
k the problem of ex
ludedvolume by expanding the fun
tional integral in powers of the site-site intera
tionparameter. This expansion is divergent in three dimensions, however, in fourdimensions the ex
luded volume intera
tion 
an be regarded as a perturbation.Heuristi
ally this 
an be explained by the fa
t that the Hausdor� dimension of aex
luded volume 
hain is less than two (it is dH � 1:7 [68℄), two planes (dH = 2)will almost always 
ross ea
h other in a four dimensional spa
e, while they willalmost never 
ross ea
h other in a �ve dimensional spa
e. Similarly two self-avoiding 
hains will rarely overlap if the dimension is four [21℄. The expansion
an furthermore be expanded in � given by the dimensionality d = 4��. Through
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edure singular terms around d = 4 are absorbed in aseries of relations relating mi
ros
opi
 (bare) quantities to e�e
tive ma
ros
opi
quantities. Hen
e the ill-behaved mi
ros
opi
 model is reformulated into a well-behaved e�e
tive model that depends only on ma
ros
opi
 quantities, and these
an then be evaluated for � = 1 i.e. in three dimensions.Using a simple mean �eld argument Flory predi
ted a simple s
aling relation
R2ee� = b2n2� between mean-end-to-end distan
e and the number of statisti
alsegments for a �exible 
hain with ex
luded volume intera
tions [21℄. Here b is theKuhn length, n is the number of segments whi
h is assumed to be large. Floryalso gave an expression for the 
riti
al exponent � = 3=(d+ 2). This expressiongives the 
orre
t value for one and two dimensions. In three dimensions Florypredi
ted v = 0:6, while RGT predi
ts a value of � = 0:588 [63, 68℄. For 4four dimensions or more � = 0:5. RGT also provides an expression for thepair-distan
e distribution [60, 64, 69℄ from whi
h the radius of gyration 
an be
al
ulated [70℄ as DR2gE = b2n2�2(1 + �)(1 + 2�) :Later studies have shown that di�erent exponents exist for end-to-end, end-to-internal point and internal-to-internal point distributions [60, 64℄. The resultfor a �exible random walk is retrieved in the limit of � ! 0:5. The Hausdor�or fra
tal dimension of a 
hain is given by dH = ��1, and this is related to thevolume o

upied by a 
hain in the long 
hain limit.4.7 S
attering from a dilute solution of �exible poly-mersIn a dilute polymer solution we 
an negle
t the 
orrelations between positions,orientation, and 
on�guration of individual 
hains, and as a result the s
attering
an be 
al
ulated from the pair-distan
e distribution of a single 
hain (H(q) =0). For a long �exible polymer without intera
tions between any sites the pair-distan
e distribution is given by a Gaussian distribution asP (r; l)4�r2dr = � 32�hR2ee(l)i� 32 exp � 3r22hR2ee(l)i! 4�r2dr:This results follows from the fa
t that the problem of a non-intera
ting�exible polymer 
an be mapped onto the problem of a random walker, wherethe time in the random walk problem 
orresponds to 
ontour length for thepolymer. P (r; l) is the distan
e distribution for two arbitrary sites on the 
hainseparated by a distan
e l along the 
ontour. The s
attering 
ontribution fromtwo �xed sites separated by a �xed 
ontour length l is sin(qr)=(qr) averagedover all possible separations r as	(q; l) = Z 10 dr4�r2 sin(qr)qr P (r; l) = exp �blq26 ! :
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on�gurational averaged phase fa
tor for �xed 
ontour length.The full s
attering is obtained by averaging the phase fa
tor over all possiblesites (l1 and l2) on the 
hain asFDebye(q) = Z L0 dl1dl2L2 	(q; jl1 � l2j) = Z L0 dl2(L� l)L2 exp �blq26 !
= 2 (e�x � 1 + x)x2 ;where the abbreviation x = bLq2=6 = (qRg)2 was introdu
ed. This result was�rst derived by Debye in 1947 [71℄. In a similar manner the form fa
tor ofany polymer 
hain with a given pair-distan
e distribution 
an in prin
iple bederived. Results for the Daniels and des Cloizeaux distributions [55, 60℄ aregiven in arti
le IV and shown in �gure 4.1.
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Figure 4.1: Form fa
tors for di�erent pair-distan
e distributions for Rg = 3:11band L=b = 38 
orresponding to the simulation.The form fa
tor of �exible 
hains with and without intera
tions, semi-�exible
hains without intera
tions, and simulation results with ex
luded volume inter-a
tions and semi-�exibility are shown in �gure 4.1. The Daniels approximationbreaks down around qb ' 3 values, but the remaining three form fa
tors showspower law behaviour at high q values. This is 
aused by the di�erent 
hainstatisti
s
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Figure 4.2: S
ale dependent Hausdor� dimension 
orresponding to form fa
torsshown in �gure 4.1. ��R�i �R�j �2�� / ji� jj 2dh(ji�jj) ;where dh(ji� jj) is the s
ale dependent Hausdor� dimension, whi
h 
an also bederived from the form fa
tor as as dH(q) = �d(log10(F
))=d(log10(q)), and thisis shown in �gure 4.2. For small qb values the 
hain is probed on very long lengths
ales 
ompared to the radius of gyration, where 
hains are point-like obje
tswith Hausdor� dimension is zero. For large values of qb very short length s
alesare probed, the Debye and des Cloizeaux distributions do not in
lude semi-�exibility, and they 
onverge to the long 
hain limit of a random walk and aself-avoiding random walk, whi
h yields Hausdor� dimensions of two (� = 0:5)and 1:7 (� = 0:588), respe
tively. The Hausdor� from the simulation has a peakat the length s
ales where the random walk nature of the 
hain is probed, butthe simulations in
ludes e�e
ts of semi-�exibility, whi
h leads to dH = 1 at largevalues of qb. An extended range of powerlaw behaviour is not observed be
auseof the �nite number of segments and few verti
es per Kuhn length.



4.8. SCATTERING FROM A SEMI-DILUTE SOLUTION 314.8 S
attering from a semi-dilute solution of �exiblepolymersAssuming that N identi
al polymers ea
h with n segments/s
attering sites isdissolved in a volume V . Assuming further that R�ij is the position of the j'thsegment on the i'th 
hain when the 
olle
tive 
on�gurations of all the 
hains isdenoted � (in the following the indi
es i; l range from 1; : : : ; N and j; k from1; : : : ; n in order to simplify notation). This means that the instantaneous den-sity distribution of the �'th state is given by��(r) = NXi=1 nXj=1 Æ(r�R�ij);while the mean density of s
attering sites in the volume is � = nN=V . The solu-tion will be in the semi-dilute regime if 4�R3gN=(3V ) > 1, where Rg is the radiusof gyration of an unperturbed 
hain. The semi-dilute regime is 
hara
terized by
hain densities so large that there are more than one 
hain within the volumeo

upied by an unperturbed 
hain.The s
attering fun
tion was shown to 
onsist of two 
ontributions due tothe 
on�gurationally averaged density and density �u
tuation 
orrelations. Theaverage density is 
onstant, and as a result the s
attering from the averagedensity is proportional to a delta fun
tion at q = 0, and it will be negle
ted.The s
attering fun
tion S(q) is the density �u
tuation 
orrelation fun
tion D(q),and is given byS(q) = 1nN *����Z dr��(r)e�iq�r����2+� = * 1nN ������ NXi nXj e�iq�R�ij ������2+�= 1nN NXi nXj;k De�iq�(R�ij�R�ik)E� + 1nN NXi 6= l nXj;k De�iq�(R�ij�R�lk)E� ;whi
h 
an be written as S(q) = !(q) + �h(q): (4.9)We have thus written the total s
attering fun
tion as the 
ontribution fromintra-
hain 
orrelations, and inter-
hain 
orrelations. The intra-
hain s
attering
ontribution is de�ned as!(q) = 1nN NXi nXj;k De�iq�(R�ij�R�ik)E� ;whi
h is simply the Fourier transform of the distan
e distribution between siteson the same 
hain. If 
hain-
hain intera
tions are weak, for instan
e for suf-�
iently low densities within the semi-dilute regime, and if we negle
t semi-�exibility and ex
luded volume intera
tions, then !(q) = nNFDebye(qRg). The
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hain s
attering 
ontribution is the Fourier transform of the distan
e dis-tribution between sites on di�erent 
hainsh(q) = V(nN)2 NXi6=l nXj;k De�iq(R�ij�R�lk)E� :Inter-
hain 
orrelations are long-ranged on the length s
ale of the 
hara
ter-isti
 inter-
hain length s
ale. This is 
aused by indire
t intera
tions mediatedby neighbouring polymer 
hains. As a result an e�e
tive inter-
hain 
orrelationfun
tion between sites on pairs of polymers 
an be introdu
ed, whi
h is 
alledthe dire
t 
orrelation fun
tion, and denoted 
(q), this should not to be 
onfusedby the Fourier transform of the average density distribution C(q). The dire
t
orrelation fun
tion is introdu
ed in an attempt to de
ompose the 
orrelationsindu
ed by indire
t intera
tions, mediated by the medium 
onsisting by all otherpolymers, into an e�e
tive pair 
orrelation that in
ludes only dire
t intera
tionsbetween pairs of 
hains. The dire
t 
orrelation fun
tion is expe
ted to have a
hara
teristi
 length s
ale 
omparable to the inter-
hain distan
es. In realityea
h pair of sites on two 
hains have a dire
t 
orrelation fun
tion, but an aver-age is often performed over all sites produ
ing a site-averaged dire
t 
orrelationfun
tion. This is the equivalent site approximation.
S(q)= + ρ
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ρ2
+ ...

=
c

ω
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h

Figure 4.3: Diagrammati
 expansion of the PRISM equation in terms of intra-
hain 
orrelations !(q), and dire
t 
orrelation fun
tion 
(q).Following this approa
h, the s
attering 
an be resolved into 
ontributionsfrom the individual 
hain !, a 
ontribution from the 
orrelation between twopolymers �!
!. A diagrammati
 expansion is shown in �gure 4.3, where thes
attering is interpreted as the 
orrelation 
reated by a jump from one site toanother site on the same 
hain (providing a fa
tor !), a jump from that siteto another site on another 
hain (�
), and �nally a jump to another site onthe other 
hain (!). Taking higher order terms into a

ount the result is anexpansion of the s
attering fun
tion asS(q) = ! + �!
! + �2!
!
! + �3!
!
!
! + � � � (4.10)This equation 
an be regarded as the de�nition of the dire
t 
orrelationfun
tion. Comparing eq. (4.9) and (4.10) shows that the total inter-mole
ular
orrelation fun
tion 
an be written
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! + �!
!
! + �2!
!
!
! + � � � = !
 (! + �h) ; (4.11)whi
h is the Polymer Referen
e Intera
tion Site Model (PRISM) equation [72,73, 74, 75℄. In PRISM theory an expression for !(q) is assumed, as well as a 
lo-sure relation, whi
h relates the dire
t 
orrelation fun
tion 
(r) to an intera
tionpotential. From the 
losure relation the total 
orrelation fun
tion h(q) 
an thenbe obtained via the PRISM equation. Solving eq. (4.9) and eq. (4.11) for theintra-
hain 
orrelation fun
tion ! and the dire
t 
orrelation fun
tion 
(q) yieldsS(q) = !(q)1� �
(q)!(q) :If the dire
t 
orrelation fun
tion is short ranged, the Fourier transformwill essentially be 
onstant, so we 
an introdu
e the approximation ��(�) =�n�
(q = 0), where � is the ex
luded volume parameter. The assumptionthat the ex
luded volume parameter is a fun
tion of the density was origi-nally suggested by Daoud et al. [20℄ and rigorously shown by Benoit et al. [76℄.A normalised intra-
orrelation fun
tion is de�ned as !(q) = !(q)=n su
h that!(q = 0) = 1. This has the e�e
t of turning the PRISM expression for thes
attering into the form of an Random Phase Approximation (RPA) [73, 76℄S(q) = n !(q)1 + ��(�)!(q) :Thus nS(q = 0) = 1 + �(�)�:The left hand side is the s
attering per polymer mole
ule rather than pers
atterer. The ex
luded volume parameter �(�), whi
h should not be 
onfusedto the 
riti
al length exponent. A 
omparison of this expression with eq. (4.8)shows that �(�) = 2A2(�). The ex
luded volume parameter 
an be shown todepend only on the redu
ed polymer 
on
entration 
=
� [21, 73℄.4.9 Core-shell modelsCore-shell models des
ribe the s
attering as being 
aused by a number of 
on
en-tri
 shells, see e.g. [70, 77℄. Assuming the shells to be of in�nitesimal width, the
ore-shell model assumes knowledge of the �(s) area density of s
atterers on the ssized shell. The normalised 
ore-shell form fa
tor amplitude (Ashell(q = 0) = 1)is given byAshell(q) = ��1 Z 10 dsA(s)	s(q; s)�(s) with � = Z 10 dsA(s)�(s); (4.12)where A(s) is the area and 	s(q; s) is the phase fa
tor of a s sized shell givenby



34 CHAPTER 4. THEORY	s(q; s) = A(s)�1 Z drÆ[f(r; s)℄e�iq�r;where f(r; s) is a shape-fun
tion. The shape fun
tion is zero if and only ifthe point r is on the shell with size s. The area of the shell A(s) is given byA(s) = R drÆ[f(r; s)℄. The orientationally averaged form fa
tor and form fa
toramplitude of a shell stru
ture isFshell(q) = hAshell(q)Ashell(�q)io and Ashell(q) = hAshell(q)io :An example: For the spe
ial 
ase of a spheri
al shell the shape fun
tion isf(r; s) = jrj � s, in this 
ase the phase fa
tor is easy to 
al
ulate as	sphere(q; s) = A(s)�1 Z drÆ[jrj � s℄e�iq�r= 14�s2 Z d�d(
os �)e�iqs 
os � = sin(qs)qs :Assuming a homogeneous spheri
al obje
t the radial density is �(s) = 1 fors < r and 0 elsewhere. The radial integral be
omesAsphere(q) = 34�r3 Z r0 ds4�s2 sin(qs)qs= 3[sin(qr)� qr 
os(qr)℄(qr)3 = �(qr):This result was �rst obtained by Lord Rayleigh [78℄. The form fa
tor ampli-tude for a homogeneous sphere is the simplest possible 
ore-shell stru
ture andwill denoted �(qr) in the rest of this thesis. Sin
e the form fa
tor amplitudeonly depends on the magnitude of the q ve
tor the form fa
tor of a sphere isFsphere(q) = �2(qr). The form fa
tor will always be the square of the form fa
toramplitude for any spheri
al symmetri
 distribution.A 
ore-shell model of a mi
elle with a spheri
al 
ore assumes Fmi
elle(q) =(�
orA
or(q) + �
o�(qR
o))2, where the 
orona form fa
tor amplitude A
or isgiven by eq. (4.12) using some assumed 
orona pro�le �(r). Hen
e 
ore-shellmodels in
ludes s
attering due to an average shell densities (C(q)), but negle
tsthe s
attering s
attering due to density �u
tuations (D(q)) 
aused by 
hain
onne
tivity, and 
hain intera
tions su
h as the 
orrelation hole [20℄ are ne-gle
ted. The next se
tion demonstrates how some of these e�e
ts 
an be takeninto a

ount.
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Core

Corona

Figure 4.4: Illustration of a mi
elle 
onsisting of a spheri
al 
ore and a 
oronaof dissolved 
hains.4.10 S
attering from a mi
ellar aggregateA mi
elle 
onsists of a 
ore with some geometri
al shape su
h as spheri
al,ellipti
al or 
ylindri
al, and a 
orona of dissolved polymer 
hains. Assumingthat the 
ore is homogeneous then it 
an be des
ribed by a 
ore-shell modelAs(q). The normalised (A�
or(q = 0) = 1) 
orona form fa
tor amplitude isA�
or(q) = 1Nn NXi=1 nXk=1 e�iq�R�ik ;where R�ik is the lo
ation of the k'th vertex on the i'th 
hain in the 
orona whenthe 
orona is in the �'th state. N is the number of 
hains, and n is the numberof s
attering sites per 
hain (in the rest of this se
tion all i and j sums areover 
hains, i.e. they range from 1; : : : ; N). The normalised [Fmi
elle(q = 0) = 1℄s
attering of a mi
elle 
an then be written asFmi
elle(q) = (�
h + �
o)�2 Dj�
hA�
or(q) + �
oAs(q)j2E�o ; (4.13)where the average is over all 
on�gurations (���) of the 
hains in the 
orona andorientations (�o�) of the mi
elle. The two terms des
ribe the 
orona and 
ore, re-spe
tively. �
h and �
o are the total ex
ess s
attering lengths of the whole 
oronaand 
ore. These 
an be written �
h = NV
h��
h and �
o = N
oV
o��
o whereN ,N
o, V
h and V
o are the number of 
hains in the 
orona and 
ore, respe
tively,and the spe
i�
 volume of a single 
orona and 
ore 
hain, respe
tively. The ex-
ess s
attering length densities of a 
orona 
hain is��
h = �
orona;
hain��solvent
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ore 
hain ��
o = �
ore;
hain � �solvent, where �
orona;
hain,�
ore;
hain,and �solvent are the s
attering length densities of a single 
hain in the 
orona,of a single 
hain in the 
ore, and of the solvent, respe
tively. Assuming thatthe 
ore form fa
tor As(q) is real, whi
h is the 
ase if the 
ore has a parity(R! �R) symmetry, then the mi
ellar s
attering 
an be expressed asFmi
elle(q) = (�
h + �
o)�2 D�2
hA�
or(q)A�
or(�q)+�2
oA�s (q)2 + 2�
h�
oAs(q)Re (A�
or(q))E�o :These three s
attering terms 
orrespond to the 
orona form fa
tor, the 
oreform fa
tor, and an 
orona-
ore interferen
e s
attering, respe
tively. A nor-malised 
orona form fa
tor is de�ned byF
or(q) = DjA�
or(q)j2E�o : (4.14)The 
orona-
ore interferen
e s
attering 
an be de�ned asS
s(q) = hAs(q)Re (A�
or(q))i�o :In the spe
ial 
ase of a spheri
al 
ore S
s(q) = �(qr)A
or(q) and A
or(q) =hA�
or(q)i�o. Using these de�nitions, the mi
ellar s
attering for a spheri
al 
oreis Fmi
elle(q) = �2
hF
or(q) + �2
o�2(qr) + 2�
h�
o�(qr)A
or(q):The physi
al interpretation of these three terms is that they, respe
tively,
orrespond to the Fourier transform of the pair-distan
e distribution betweentwo s
attering sites in the 
orona, two s
attering sites in the 
ore, or between twos
attering sites in the 
ore and in the 
orona. In the spe
ial 
ase of a spheri
al
ore, the ve
tor between a site in the 
orona and a site in the 
ore 
an be writtenas a sum of a ve
tor from the 
orona site to the 
ore 
enter, and from the 
ore
enter to the 
ore site. Due to the rotational symmetry these two ve
tors willbe statisti
ally independent and independent on orientation. As a result thepair-distan
e distribution fa
torises into the produ
t of a 
orona-site-to-
ore-
enter (A
or) and 
enter-to-
ore-site (�) probability distributions, the Fouriertransform of whi
h is S
s(q).The 
orona s
attering 
an separated into 
ontributions using several 
hoi
esfor the separation. One possibility is to separate the 
orona s
attering in termsof s
attering from the 
on�gurationally average density, and s
attering fromthe density �u
tuation about this average. Another approa
h is to separate thes
attering in terms of inter-
hain s
attering and of intra-
hain s
attering asF
(q) = * 1N Xi jA�i (q)j2+�o ; andH(q) = * 1N(N � 1)Xi6=j A�i (q)A�j (�q)+�o ; (4.15)



4.11. INTERPRETATION OF SCATTERING 37where the phase sum A�i of the i'th 
hain when the 
orona is in the �'th 
on-�gurational state is de�ned asA�i (q) = 1n nXk=1 e�iq�R�ik :The 
orona form fa
tor is the following weighted averageF
or(q) = 1N F (q) + N � 1N H(q): (4.16)The physi
al interpretation of these two terms is as follows: F (q) is theaverage single 
hain form fa
tor, e.g. the Fourier transformed pair-distan
e dis-tribution between sites within the same 
hain. This 
arries information aboutthe 
hain radius of gyration, 
hain length, 
hain sti�ness, and the number ofstatisti
al independent segments. It also 
ontains information about 
hain 
on-ne
tivity su
h as the fra
tal dimension of the 
hain. The Fourier transform ofthe pair-distan
e distributions between sites on di�erent 
hains H(q) 
ontainsinformation about the radial pro�le of the 
orona, but also 
hain-
hain intera
-tions su
h as the 
orrelation hole, whi
h is present in ordinary three dimensionalpolymer solutions [20, 21℄.4.11 Interpretation of s
atteringS
attering te
hniques are very sensitive to the stru
tural arrangements of thes
atterers, espe
ially periodi
 stru
tures. As a result s
attering te
hniques areideally suited to probe stru
tural arrangements. However, the basi
 problem ofs
attering tehniques is the inverse problem of how to dedu
e stru
ture from theexperimental data of the s
attering S(q), sin
e phase information is lost in themeasuring pro
ess only the pair-distan
e distribution 
an be re
onstru
ted, andfrom from whi
h stru
ture must be inferred.Furthermore, the s
attering is only known in a 
ertain range of q ve
torsdue to instrumental limitations. Data are subje
t to instrumental smearing dueto �nite beam 
ollimation (how well de�ned are dire
tions of ks and ki ), wave-length spread (how narrow is the energy distribution e.g. jkij for instan
e froma neutron sour
e), and �nite dete
tor resolution. Finally there are statisti
allyerrors on the experimental s
attering data. All these sour
es of error make adire
t inversion of S(q) very di�
ult in general. Only in the spe
ial 
ase of aspheri
ally symmetri
 arrangement of s
atterers is it possible to analyti
ally in-vert the s
attering, as in that 
ase the Fourier transform is a real fun
tion, andno phase information is lost due to the norm square ex
ept for an overall sign.Two types of methods exist for inferring the physi
al stru
ture produ
ing theobserved s
attering; these are model �tting and free-form analysis [19℄. In free-form analysis the pair distan
e distribution is obtained for example by the in-dire
t Fourier transform method introdu
ed by Glatter [79℄. The method worksas follows: the pair distan
e distribution is represented as a linear 
ombina-tion of 
ubi
 splines, typi
ally with some 50 spline fun
tions. The 
oe�
ientsare obtained by �tting the Fourier transformed basis fun
tions to the observed
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attering data. Finally, if the s
attering obje
ts are 
entro-symmetri
 the radialex
ess s
attering length density distribution 
an be obtained from square-rootde
onvolution, also introdu
ed by Glatter [80℄. Instrumental e�e
t 
an further-more be in
orporated in the �t. The �free form� name of the method followsfrom the fa
t that the indire
t Fourier transform method is independent on anya-priori assumed model expressions, just like maximum entropy methods.Model �ts using least-squares methods [81, 82, 83, 84℄ is another way of in-ferring the stru
ture [85℄. A parti
ular model is assumed, for instan
e a modeldes
ribing the s
attering expe
ted from a solution of mi
ellar aggregates. Themodel will depend on a number of parameters, and the most likely set of param-eters are obtained from �tting the model s
attering to the experimental data.The goodness-of-�t is typi
ally estimated by the redu
ed 
hi-square statisti
�2red, whi
h is de�ned as�2red(�1; : : : �M ) = 1N �M NXi=1 �Iexpi � Imod(qi;�1; : : : �M )�2�2i ;where N is the number of experimental data points Iexpi , qi is a set of �xed
ontrol parameters e.g. dete
tor positions, and �i is the error of the experimen-tal data, while Imod is the model predi
tion of the s
attering at qi. The modeldepends on the M parameters �1; : : : ; �M . The most likely set of 
ontrol pa-rameters assuming the model is true are determined by minimising �2red. If theobtained redu
ed 
hi-square is 
lose to unity it suggests that the model is agood des
ription, and that the estimated parameter values are reliable, as themodel 
urve will on average pass through a 2�i sized window about every datapoint Iexpi . If the redu
ed 
hi-square is �large� the model is likely to be a wrongdes
ription of the data, and parameters obtained by the �ts are meaningless. If,on the other hand, the redu
ed 
hi-square is less than unity, it suggests that theerror bars are either systemati
ally too large or that the model depends on toomany parameters given the quality of the experimental data.4.12 Maximum Entropy methodsA good introdu
tion to Bayesian statisti
s and Maximum entropy (ME) hasbeen written by Jaynes [86℄, while [87, 88℄ are reviews of s
attering relatedappli
ations of ME. The following is a heuristi
 introdu
tion.Given an experiment that involves a measurement on a distribution, andyields as experimental result for the mean a and varian
e �2 of the distribution,whi
h distribution was measured? Clearly the question is ill-posed as no uniquedistribution 
an be spe
i�ed based on the knowledge of the mean and varian
e,however, a unique distribution exists that assumes the least amount of extrainformation 
ompared to the information we have. This is the maximum entropydistribution. From information theory [89℄ the relative entropy is de�ned asH[P;Q℄ = �Xi Pi log2(Pi=Qi) = � Z dxP (x) log2 �P (x)Q(x)� :



4.12. MAXIMUM ENTROPY METHODS 39In the 
ontext of information theory, this expression has the following in-terpretation: if a re
eiver has a prior information given by the frequen
y Qi ofsymbols/letters re
eived in earlier messages, and re
eived a new message withsymbol frequen
ies Pi, the relative entropy that the re
eiver has obtained isH[P;Q℄, i.e. this is the number of bits of knowledge the re
eiver has after re-
eiving the message. This is almost always di�erent from the number of bitsin the message itself. The relative entropy 
an be interpreted as the averageof the information or �surprise�, when we observe the i'th symbol as given by� log2(Pi=Qi). If Pi=Qi is one it means that we are observing a parti
ular sym-bol with the expe
ted frequen
y, and this is not a surprise, nor will we re
eiveany new information. However, if Pi=Qi is large a parti
ular symbol is observedmore frequently than expe
ted, and we will be very surprised by its o

urren
e,i.e. we have re
eived a lot of new information.Thus given the experiment whi
h provides prior knowledge of the mean andvarian
e, and assuming no prior knowledge about the shape of the distributione.g. Q(x) = 1, the entropy is given byH[P ℄ = � Z dxP (x) log(P (x)) + �0 (1� h1i)+�1 (a� hxi) + �2 �� � hDx2E� hxi2i� ;where hf(x)i = R dxP (x)f(x) is the expe
tation value of the fun
tion f(x). Herebase e is used instead of base 2 in the logarithm, whi
h makes no di�eren
e,as it 
orresponds to a rede�nition of the unit of information from a number ofbits (binary digits) to the number of base e digits. The three �'s are Lagrangemultipliers. The Lagrange multipliers represent the 
onstraints that the distri-bution should be normalised, and that the mean a and varian
e �2 
orrespondto the known values. The distribution whi
h maximizes the entropy fun
tionalis given by the equation ÆH[P ℄=ÆP = 0 from whi
h, it is easy to show that thesolution is P (x) = N exp[�(x� a)2=(2�2)℄, i.e. a Gaussian distribution.
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Chapter 5Monte Carlo SimulationComputer simulation te
hniques 
an be graded on a s
ale from purely sto
hasti
to purely deterministi
 algorithms. Deterministi
 algorithms, su
h as Mole
u-lar Dynami
s (MD) simulate the traje
tory of a system in phase spa
e. This isdone by solving the equations of motion numeri
ally. MD simulations 
an beperformed on non-equilibrium systems and simulate transport properties. It ispossible to obtain time averages of all the properties of interests from a MDsimulation. Assuming that the sampling of the system is ergodi
, then ensembleaverages are obtained. Typi
ally MD simulations are done within the mi
ro-
anoni
al ensemble, but simulation of other ensembles are possible by modifyingthe MD algorithm. MD methods are limited by the small time steps requiredto perform an a

urate numeri
al integration of the equations of motion, andobje
ts with rigid 
onstraints are 
omputationally di�
ult to simulate.At the other end of simulation te
hniques are sto
hasti
 algorithms, whi
hare based on the appli
ation of (pseudo) random numbers. A Monte Carlo (MC)simulation allows 
anoni
al ensemble averages to be obtained for interestingproperties. Whereas MD simulates the evolution of a system through the equa-tions of motion, a MC simulation de�nes a purely �
titious dynami
, whereea
h state of the system has a number of possible �neighbour states�. The MCsimulation is performed by allowing the a
tive state to perform a random walkfrom neighbour to neighbour state. A neighbouring state to the a
tive stateis 
hosen randomly for ea
h iteration of the MC algorithm. The energy of theneighbour state is 
al
ulated, and 
ompared to the a
tive state. The step to theneighbour state is a

epted if the neighbour state has a lower energy, however,if the energy of the neighbour state is higher than the a
tive state it is a

eptedwith a probability exp[��E=(kbT )℄, where �E > 0 is the energy di�eren
ebetween the two states, kb and T are the Boltzmann 
onstant and the absolutetemperature. The a

eptan
e 
riterion is known as the Metropolis 
riterion [90℄.The MC algorithm will perform a random walk, that visits a state ! with afrequen
y proportional to the Boltzmann probability asso
iated with that stateexp[�E[!℄=(kbT )℄. This is known as importan
e sampling, and requires onlythat the energy of an state 
an be 
al
ulated.The 
hoi
e of possible neighbour states of a parti
ular state is to some extentarbitrary, however, the 
hoi
e has to ensure an ergodi
 sampling of all 
on�gu-41
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h is to say that any two states have to be 
onne
ted by a numberof neighbour steps. The 
hoi
e also has to ensure an asymptoti
 
onvergen
etowards an unique equilibrium ensemble of states, and this requires a balan
e,su
h that the transitions into any state exa
tly equals the transitions out ofthat state, su
h that no state a
ts as an absorber. Detailed balan
e, i.e. theprobability of 
hoosing neighbour state B from an a
tive state A must equal theprobability of 
hoosing neighbour state A from an a
tive state B, is a su�
ientrequirement to ensure asymptoti
 
onvergen
e.The 
hoi
e of neighbour states do not have any physi
al meaning, but a
lever design of neighbouring steps, for instan
e by taking rigid 
onstraints intoa

ount when designing the neighbour 
lass, allows the MC algorithm to roamthe 
on�guration spa
e in relative few iterations, whi
h makes a good samplingpossible with a limited number of steps.5.1 Overview of SimulationsWe have performed MC simulations on a single diblo
k 
opolymer mi
elle, withthe purpose of sampling the form fa
tor as a fun
tion of a the number of tethered
hains, the length of 
hains, and the radius of the 
ore. The mi
elle was mod-elled as a 
ore with a number of semi-�exible 
hains tethered to the 
ore surfa
e.Spheri
al 
ores and 
ylindri
al 
ores with hemispheri
al end 
aps have been sim-ulated. Chains were ex
luded from the 
ore region, and 
hains intera
ted throughex
luded volume intera
tions implemented by pla
ing hard spheres along the
hains.Be
ause hard sphere intera
tions was used the energy of a parti
ular stateis either zero or in�nite depending on whether 
hains overlap or not, as a result,the energy is independent of the temperature, whi
h 
orresponds to the idealised
ase of an athermal solvent. To ensure ergodi
 sampling of the mi
ellar 
orona,three MC moves were used; pivoting moves were used to modify individual
hain 
on�gurations, while two surfa
e moves were used to reorientate the 
hainand move it on the 
ore surfa
e. During the simulation a number of physi
alquantities was sampled su
h as the s
attering 
ontributions 
orresponding tothe inter-
hain s
attering F , the inter-
hain s
attering H, and the 
orona formfa
tor amplitude A
or. We also sampled the single 
hain radius of gyration,the mean 
hain 
enter-of-mass distan
e from the 
ore, and the radial monomerpro�le.5.2 Models of Chains Mole
ulesPolymers are string-like mole
ules 
onsisting of many identi
al monomers boundby 
ovalent bonds. The bonds between individual monomers have a 
ertaintorsional potentials, and the monomers 
an have side groups, whi
h gives riseto lo
al steri
 hindran
e for rotations. These lo
al intera
tions gives rise to a
ertain sti�ness on length s
ales 
omparable to the monomer length s
ale [54℄.We model a polymer 
hain by n+ 1 verti
es linked by n segments of length l0.The angle between subsequent segments is �xed at a 
onstant value �, while the



5.3. CREATING A CHAIN 43dihedral angle wi 
an take any value in the interval [��;�℄ for any segment,where wi = 0 
orresponds to a trans-
on�guration. This semi-�exible modelprovides a good meso-s
opi
 des
ription of polymers using an e�e
tive segmentlength and angle [91, 92℄.
Θlo wi

i+1P

iP

i-1P

Figure 5.1: Illustration of a semi-�exible 
hain in trans-
on�guration, the tail ofthe 
hain has been pivoted 180Æ about the i'th segment.A valen
e angle of � = 44:4153o was 
hosen, su
h that the Kuhn lengthb = 6l0. In the long 
hain limit the radius of gyration of a �exible 
hain andsemi-�exible 
hain 
oin
ide. The freely rotation 
hain model 
an be regarded asa dis
rete version of the 
ontinuous Kratky-Porod 
hain model, whi
h is rea
hedin the limit L!1, l0 ! 0, � ! 0 for �xed L=b.Ex
luded volume intera
tions was simulated by pla
ing hard spheres withradius � at ea
h vertex. The radius was 
hosen su
h that �=b = 0:1, whi
h isknown to reprodu
e the binary 
luster integral of polystyrene in a good solvent[93℄.5.3 Creating a 
hainDe�ning the i'th segment ve
tor by ri = Pi+1 � Pi where Pi is the positionof the i'th vertex. We assume that the foot vertex P1 is given, along with thedire
tion r1. To de�ne a 
oordinate system, we need two ve
tors. We 
hoose arandom ve
tor R not parallel to r1 is 
hosen. Then a ve
tor orthogonal to r1 is
onstru
ted by r? = R� � R � r1jRjjr1j� r1:A �
titious zeroth segment ve
tor 
an 
onstru
ted using the orthogonal ve
-tor by r0 = �l0 
os � r1jr1j + l0 sin � r?jr?j : (5.1)The zeroth and �rst segment ve
tors de�ne a 
oordinate system from whi
hall subsequent segments 
an be added, and the �
titious zeroth segment makesit possible to uniquely de�ne the dihedral angle of the �rst segment. In generalgiven the i � 2 and i � 1 segments the i'th segment 
an be 
onstru
ted with
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i�ed segment length l0, segment angle �, and dihedral angle wi�1 of theprevious segment as follows: De�ne two auxiliary ve
torsn1 = ri�2 � ri�1 and n2 = ri�1 � n1:n1 is orthogonal to the plane spanned by the two segment ve
tors, whilen2 lies within the plane, and points in the dire
tion of a trans 
on�guration.The three ve
tors fri�1;n1;n2g de�nes an orthogonal 
oordinate system. In this
oordinate system the i'th segment 
an be 
onstru
ted su
h that the previoussegment has a torsion angle !i�1 byri = �l0 
os � ri�1jri�1j + l0 sin ��
os(!i�1) n2jn2j + sin(!i�1) n1jn1j� : (5.2)Here the dihedral angle is zero in the trans state, and the sign of the dihedralangle is de�ned in a right handed manner. Any 
hain 
on�guration is 
ompletelyspe
i�ed by the knowledge of r0, r1, the �xed segment length and angle, anda table of dihedral angles wi for i 2 f1; : : : ; n� 1g, while the 
hain position inspa
e is given by the knowledge of any vertex for instan
e the foot vertex P1,whi
h is �xed on the mi
elle surfa
e.This representation in terms of generalised 
oordinates suggests that an MDsimulation based on propagating the system using the Euler-Lagrange equation[94℄ would be more e�e
tive than using Newtons se
ond law and enfor
ing the
onstraints through a rattle or shake algorithm [95℄. A hybrid MD/MC algo-rithm has been proposed that uses a generalised 
oordinates representation of a
hain[96℄. We have used a simple 
oordinate representation of all verti
es as thisfa
ilitates the overlap 
he
k between di�erent 
hains, and it is a natural 
hoi
ewhen sampling the mi
ellar s
attering.5.4 Creating a mi
elleA mi
elle 
onsists of a 
ore and a number of tethered 
hains. The tethered 
hainsare ex
luded from the 
ore and are not allowed to overlap. Chains are grownsimultaneously rather than by adding a single 
hain at a time. First all 
hainroots (P0;P1;P2) are generated until all 
hains have a root. During this phasethe P1 and P2 verti
es are 
he
ked for overlap with other roots, and the se
ondvertex P2 is 
he
ked for overlap with the 
ore. If an overlap is dete
ted the rootis relo
ated. No 
he
ks are made for the zeroth segment as this is not a physi
alsegment.Chain 
onstru
tion starts when all roots have been pla
ed and does notoverlap. Chains are grown by adding a segment to the shortest 
hain until all
hains have the required number of segments. Everytime a segment is added theend vertex is 
he
ked for overlap with all other 
hains. If an overlap is dete
ted,the last 20 segments are removed. If this in
ludes the root, then the root is re-lo
ated. During 
hain 
reation the dihedral angle is restri
ted to [�60Æ; 60Æ℄ asthis stret
hes the 
hains somewhat, and thus redu
es the 
rowding at the sur-fa
e. Chains are �exible enough, that they 
an be regrown around other 
hainsafter an overlap. While this pro
edure ensures that the initial mi
elle does not



5.5. PIVOT MOVE 45overlap, it produ
es a strongly biased initial 
on�guration. The 
on�guration isequilibrated by performing MC steps until on average 200 moves per degree offreedom have been a

epted. The equilibration was monitored by sampling thea

eptan
e rate, whi
h de
ays rapidly and stabilises when the 
orona rea
hesequilibrium. The equilibration was also monitored by sampling the radius of gy-ration and average 
hain 
enter-of-mass distan
e from the 
ore. These quantitiesare also seen to stabilise at the equilibrium values before the a
tual samplingstarts. During the equilibration phase the a

eptan
e and reje
tion frequen
yof the three MC moves was monitored, and the ex
ursion of the moves wasadjusted to obtain approximately 50% a

eptan
e rate for the three moves.The probability of 
hoosing a move was 
hosen to be proportional to thenumber of degrees of freedom that is 
hanged by an a

epted move, and thenumber of degrees of freedom of the mi
ellar 
orona. Thus an a

epted surfa
emove will modify two degrees of freedom, either two surfa
e 
oordinates ortwo orientation angles. The pivot move (see next se
tion) 
hanges one degreeof freedom, a single dihedral angle. The probabilities for the di�erent types ofmoves was 
hosen as P (Surfa
e rotation) = P (Surfa
e translation) / 2Nand P (Pivot) / (n � 1)N where n is the number of segments, and N is thenumber of 
hains in the 
orona.5.5 Pivot moveNumerous moves have previously been proposed for sampling the 
on�gurationspa
e of an isolated 
hain both on a latti
e and o�-latti
e. Some examples arereptation moves, 
on
erted rotation moves, and biased moves su
h as 
hainremoval and regrowth of the Rosenbluth type [97, 98, 99℄. However, pivots movesused in the present work allows the semi-�exibility of the 
hains to be takendire
tly into a

ount.Pivot moves was originally introdu
ed for 
hains on a latti
e [100, 101℄. Arandom site on the 
hain was 
hosen and the shortest half of the 
hain wastransformed with an element from of the latti
e symmetry group. This leadsto a very large 
on�gurational 
hange, however, the probability for overlap is
onsiderable, and as a result many attempted moves are reje
ted, on the otherhand when a move is a

epted, it has a major e�e
t on the 
hain 
on�guration.Madras and Sokal have shown that the pivot algorithm is ergodi
, and that itis the most e�e
tive move known for sampling self-avoiding random walks on alatti
e [61, 101℄.The idea of the latti
e pivot move 
an easily be generalised to o�-latti
esemi-�exible 
hains [102℄. For a 
hain in a mi
ellar 
orona, a pivot move isperformed by pivoting the tail of a 
hain around randomly 
hosen segment, asonly the tail 
an be rotated due to the fa
t that the head of the 
hain is alwaystethered to the 
ore surfa
e. The result is that while only a single dihedral angleis 
hanged, the 
hain 
on�guration is very di�erent, and after a few per
ent ofthe segments have been pivoted an essentially new 
on�guration is rea
hed.Pivoting the 
hain about a segment i with an angle � is done by transformingall verti
es Pj for j 2 fi+ 2; : : : ; ng a

ording to



46 CHAPTER 5. MONTE CARLO SIMULATIONPnewj = eQ(�;Pi+1 �Pi)(Pj �Pi) +Pi:The transformation matrix that performs a rotation � around a dire
tiongiven by the i'th segment is given by eQ(�; r) = U(r)�1Rx(�)U(r); where Rx(�)is a rotation matrix about the x axis, and U(r) is the matrix of dire
tional
osines, that relates the 
oordinate system with the x axis along the i'th segmentto the lab frame. The dire
tional 
osines are given bya11 = rjrj � ex a12 = rjrj � ey and a13 = rjrj � ez; (5.3)where ex; ey ; and ez are the unit ve
tors de�ning the x; y and z axis in thelaboratory frame. The Matrix Q 
an be written [102℄eQ = S +A; (5.4)where the symmetri
 term is (denoting 
 = 
os�)S = 0B� a211 + (1� a211)
 a11a12(1� 
) a11a13(1� 
)a11a12(1� 
) a212 + (1� a212)
 a12a13(1� 
)a11a13(1� 
) a12a13(1� 
) a213 + (1� a213)
 1CA ; (5.5)and the antisymmetri
 term (denoting Æ = sin�)A = 0B� 0 a13Æ �a12Æ�a13Æ 0 a11Æa12Æ �a11Æ 0 1CA : (5.6)In a polar representation of the 
hain the rotation is equivalent to !i = !i+�.5.6 Surfa
e movesTwo moves are required to move a 
hain, one reorientates the 
hain and anothermoves the 
hain foot point on the surfa
e of 
ore. The 
hain 
an be regarded asa rigid obje
t where the zeroth segment is transformed as the rest of the 
hain.This ensures that the torsional angle of the �rst segment stays 
onstant duringsurfa
e moves. The reorientation move is made by pivoting the 
hain an randomangle � about the foot vertex around a random dire
tion r asPnewj = eQ(�; r)(Pj �P1) +P1 for j 2 f0; : : : ; ng:For the spe
ial 
ase of a spheri
al 
ore the surfa
e moves 
an be performedwithout the need for introdu
ing a surfa
e 
oordinate system. The surfa
e moveis performed by pivoting the entire 
hain about the 
ore 
enter around a randomdire
tion. Assuming that the 
enter of the 
ore is lo
ated at the origin, this moveis given by



5.7. OVERLAP 47Pnewj = eQ(�; r)Pj:However, general moves on a non-spheri
al 
ore surfa
es requires the intro-du
tion of a surfa
e 
oordinate system and knowledge of the Ja
obian, as movesare required to produ
e an uniform sampling of the mi
ellar 
ore surfa
e.For a 
lass of 
ore geometries the surfa
e move 
an be vastly simpli�edby noting that the mapping from 
ore surfa
e onto the ins
ribed 
ylinder isarea preserving. This is true for spheri
al 
ores and hemispheri
al end-
apped
ylinders. Thus a surfa
e move 
an be regarded as a proje
tion onto the ins
ribed
ylinder, a move on the ins
ribed 
ylinder surfa
e, and a proje
tion ba
k on the
ore surfa
e. This de�nes a 
hain translation that moves the foot point to anotherposition on the 
ore surfa
e. The problem of performing a surfa
e move, thatperforms an uniform sampling of a 
omplex surfa
e, has then been redu
ed tothe simple problem of making an uniform sampling from a 
ylinder surfa
e.A move on a 
ylinder surfa
e 
an be 
omposed of a rotation around the axisof the 
ylinder, and a step along the axis 
ylinder. If the step ends up above orbelow the 
ylinder it 
an be re�e
ted ba
k on the opposite side of the 
ylinder.The proje
tion of su
h a move 
orresponds to a move that translates a 
hain tothe opposite side of the north or south pole on the 
ore surfa
e.5.7 OverlapAfter a MC move the 
on�guration must be 
he
ked for overlap. Three di�erenttypes of overlap 
an o

ur; 
hain overlap with itself, 
hain overlap with another
hain, and 
hain overlap with the 
ore. Core overlap of a vertex (x; y; z) for ageneral rotationally summetri
 
ore shape 
an be 
he
ked by x2 + y2 < R2(z)where R(z) a the 
ore 
ross se
tion at height z, whi
h for a sphere isRsphere(z) = qR2
o � z2:Chain-
hain overlap is done using the �zippering� algorithm [103℄. Considera situation where one vertex on one 
hain is being 
he
ked for overlap againstany vertex on another 
hain. If the dire
t distan
e between the two verti
es isd, and if the maximum dire
t distan
e between two verti
es at the ends of ann segment long segment is D(n), then the next vertex that has a possibility foroverlap is lo
ated maxfn > 0jd � D(n) � 2� > 0g segments along the 
hain,where the dire
t end-to-end length of n 
hain segments is given byD(n) = ( l0 
os( �2)n semi-�exiblel0n �exible :A naive algorithm for 
he
king for overlaps within the same 
hain requiresO(n2) 
he
ks, but the Zippering algorithm requires only about n1:2 [103℄, whi
hvastly redu
es the number of distan
e 
omparisons ne
essary to 
he
k a numberof 
hains for overlap. When 
he
king for overlap between two verti
es on the
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hain, a 
ertain number of neighbour verti
es are ex
luded from the 
om-parison, to avoid introdu
ing rigidity. When the hard-sphere radius � is largerthan the segment length, a number of neighbouring verti
es will always be withinthe hard sphere, and the volume available to verti
es just outside an ex
ludedvolume sphere is limited. The number of neighbours segments is 
hosen to allowthe 
hain to perform a 180Æ degree turn with radius � [91℄.5.8 Sampling s
atteringThe s
attering 
ontributions 
ould be sampled by sampling the 
on�gurationallyaveraged pair-distan
e distribution 4�R2kP (Rk) for the k'th bin at radius Rk.Then 
al
ulating the s
attering asF (q) �Xk �Rk4�R2k sin(qRk)qRk P (Rk);where �Rk is the width of the k'th bin. However, this is not a very e�e
tivemethod, as it requires O(N2) operations per sample, where N is the number of
hain verti
es. A better option would be to sample the 
on�gurational averageof the s
attering given by F (q) = DPi;j sin(qrij)=(qrij)E for all the distan
esrij between verti
es i and j. This pro
edure requires O(N2M) operations persample, where M is the number of q values that are sampled. The s
attering
an also be obtained as F (q) = *������ NXj e�iq�R�j ������2+�o ;here both an orientational and 
on�gurational average are to be performed. Andthe orientational average has to be performed �by hand� i.e. by sampling thes
attering along D di�erent q dire
tions. This requires O(NDM) evaluationsof a 
omplex exponential fun
tion. The major di�
ult is how to evaluate theexponentials e�
iently.Frenkel et al. [104℄ have suggested to use qlkm = �2�lL ; 2�kL ; 2�mL � where Lis the longest length s
ale that is interesting. As all q ve
tors are lo
ated on a
ubi
 latti
e, the exponentials 
an be 
al
ulated using Fast Fourier Transforms(FFT), whi
h is a very e�
ient method for 
al
ulating exponentials on the formexp(i�n) by exploiting re
ursive relations between di�erent integers n. However,by virtue of the latti
e the number of q ve
tors required by the FFT te
hnique tosample s
attering from qmin to qmax is D = qmax=qmin. This shows that if fourde
ades of q values are to be sampled 104 FFT samples have to be performed,and most of these will be at high q values.Inspired by the FFT te
hnique, we have 
hosen a hybrid approa
h to 
al
u-lating a few of the 
omplex exponentials dire
tly, and using symmetry propertiesto derive the rest. The goal is to lo
ate qn n 2 f1; : : : ;Mg values approximatelyequidistant on a logarithmi
 s
ale between qmin and qmax.The ideal distribution isqon = 10(log qmax�log qmin) nM+log qmin : (5.7)



5.9. CORRECTION OF POSITIONS 49By tweaking the 
hoi
e of qn values slightly we 
an optimise the evaluationof the s
attering 
ontribution from the j'th vertex to the qn'th s
attering valuealong the qe dire
tion. Our goal is to evaluatee�iqnqer�j = e�i
qn where 
 = qe � rj ;for all M values of qn for all verti
es, and for D di�erent dire
tions qe to obtainthe orientational average.In the following we will 
on
entrate on 
al
ulating the 
omplex value ofexp (�i
qn) in the 
ase where exp(�i
qm) has already been 
al
ulated for allm < n. If qm exists su
h that qn = 2qm then exp(�i
qn) = exp(�i
qm)2(the double angle formula). Sin
e we have previously evaluated exp(�i
qm),we only need to square that number. If qm; qp exists su
h that qn = qm +qp then exp(�i�qn) = exp(�i
qm) exp(�i
qp) (the addition formula). Sin
eboth exponentials have previously been evaluated, we only need to 
al
ulate theprodu
t of two known 
omplex numbers. Thus by an advantageous 
hoi
e of theqn values, we 
an use symmetry properties of the exponentials to 
onvert theminto simple produ
ts of known 
omplex numbers. The higher order symmetryproperties require more algebrai
 operations, and do not provide a signi�
antoptimisation.The a
tual distribution of qn's are 
hosen as to minimiseE[q1; : : : ; qM ℄ = k � Mln(10) (log qmax � log qmin)�2 MXi=1 �qi � q0i �2(q0i )2 (5.8)+�N
al
 + 
Nadd + ÆNdouble; (5.9)where N
al
,Nadd, and Ndouble is the number of exponentials that require dire
tevaluation, or 
an be dedu
ed using the addition formulae, or formulae for thedouble angle, respe
tively. Thus M � N
al
 +Nadd +Ndouble. The weights �; 
;and Æ are 
hosen to represent the duration of the respe
tive numeri
al operation,and we have used � = 1 and 
 = Æ = 0:1. The �rst term is a harmoni
 term,that determines how large deviations from a perfe
t logarithmi
 distributionshould be allowed in order to speed up the evaluation. Sin
e the distributionis on a logarithmi
 s
ale, we have to divide by the lo
al length s
ale, whi
h isgiven by the parenthesis and the denominator. The 
onstant k should be 
hosenso small that the ordering qm < qn when m < n is ensured. We have usedk = 0:01. This penalty fun
tional is easily minimised by a simulated annealingquen
h with moves that shift qn's, whi
h require trigonometri
 evaluations intoqn's, that 
an be evaluated by simple algebrai
 operations on known numbers.If M is huge, 
are must be taken to avoid trun
ation errors in the evaluation.In our implementation only about 10% of the 
omplex exponentials need to beevaluated dire
tly.5.9 Corre
tion of positionsThe repeated appli
ation of pivoting moves introdu
e numeri
al errors in thevertex positions, and as a result 
hains are periodi
ally re
onstru
ted using
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hain 
onstru
tion algorithm based on tabulated dihedral angles, whi
h areupdated after ea
h a

epted pivot move. The entire 
hain is also translated so thefoot vertex is on the 
ore surfa
e, this avoids di�usive behaviour of 
hains awayfrom the 
ode surfa
e due to trun
ation errors due to the repeated appli
ation ofsurfa
e moves. The 
onstru
tive 
hain 
orre
tion algorithm is far more e�
ientthan the iterative 
orre
tion algorithm of Stellman and Gans[102℄. While 
hain
onstru
tion requires few evaluations per segment, the 
orre
tion algorithm ofStellman and Gans requires the solution of a possible singular or ill-
onditioned3x3 matrix equation per segment.After all the 
hains on a mi
elle have been 
orre
ted, the mi
ellar 
orona is
he
ked for any 
orre
tion indu
ed overlaps, and equilibrated until these haverea
hed a state without overlap. However, this is very unlikely and has neverbeen observed in pra
ti
e. The maximal deviations of segment length, valen
eangle, and dihedral angle were monitored during the simulations, and found tobe below 10�12.5.10 A pra
ti
al remarkThe simulator has been implemented in C++ [105℄. C++ supports the Obje
tOriented Programming paradigm, whi
h emphases 
ode reuse, and the isolationof fun
tionality in di�erent modules with well de�ned interfa
es. The simulatorwas implemented using a number of obje
ts that provides di�erent types offun
tionality.Four obje
ts was required for the mi
elle simulator. An obje
t representeda single 
hain, and fun
tionality su
h as pivot moves and 
hain 
orre
tions,another obje
t represented the 
ore, and implemented fun
tionality for the 
oregeometry, 
he
king for 
ore overlap, and foot vertex generation. A mi
elle obje
tinherited the properties of an array of 
hain obje
ts and a 
ore obje
t, and a MCobje
t inherits all the properties of a mi
elle, and adds fun
tions for samplingdata and the basi
 MC algorithm.The Monte Carlo algorithm only needs to know about the energy of 
on�gu-ration and when to sample and save data. A mi
elle 
onsists of a 
ore and some
hains. But the mi
elle obje
t does not need to know the 
ore geometry nor how
hains 
on�gurations are represented. However, the mi
elle obje
t has to supplya neighbour move and a fun
tion that 
an 
al
ulate the energy to the MonteCarlo algorithm, and supply some way of 
reating a mi
elle. The 
hain obje
t
ontains information about the 
hain 
on�guration, the pivoting algorithm, and
hain 
orre
tion. The 
ore obje
t 
ontains information about the 
ore geometry,and routines for performing surfa
e moves, 
reating foot verti
es, and 
he
kingfor vertex 
ore overlaps. Thus when the Monte Carlo algorithm wants to sele
ta new neighbour state, it 
alls a neighbour fun
tion supplied by the mi
elle ob-je
t, this fun
tion sele
ts if it should be a 
hain pivot move or a surfa
e move.Pivots moves are performed by sele
ting an angle and a 
hain, and 
alling thepivot fun
tion supplied by that 
hain obje
t. Surfa
e moves are performed byrandomly sele
ting a 
hain and 
alling a fun
tion in the 
ore obje
t that suppliesa ve
tor. This ve
tor translates the foot vertex of the 
hain to another point on



5.11. POSSIBLE IMPROVEMENTS 51the 
ore surfa
e, and the a
tual translation is performed by a fun
tion in the
hain obje
t.Stri
t adheren
e to an obje
t oriented approa
h allows a 
lean separationof fun
tionality into di�erent obje
ts. This has an enormous advantage. If, forinstan
e, a new 
ore geometry has to be implemented, only the 
ore obje
t needsto be modi�ed. If the mi
elle 
orona 
onsists of 
hains of di�erent length onlythe mi
elle obje
t needs to be modi�ed. Obje
t Oriented Programming makesit very easy to modify the simulation 
ode.5.11 Possible improvements5.11.1 Overlap 
he
ksThe overlap 
he
k use the zippering algorithm when testing for overlap be-tween two di�erent 
hains say 
hain A and B. Currently, this is implementedby 
omparing all verti
es on 
hain A by zippering along the verti
es of 
hainB. However, as the positions of ea
h vertex, that is 
he
ked during the over-lap 
he
k, is known, it is possible for a vertex on 
hain A and pair of verti
eson 
hain B to 
al
ulate the 
losest possible separation between the intervening
hain segment and the vertex on 
hain A. And the minimal separation distan
ebetween any site on 
hain B 
an be used as the 
ontour length of the step along
hain A. This double zippering algorithm would probably lead to a signi�
antin
rease of e�
ien
y of the overlap 
he
k for many 
hain systems espe
ially forlong 
hains.5.11.2 ReptationThe pivoting algorithm would have a low a

eptan
e rate for 
oronas with verylarge surfa
e 
overages, if the maximum ex
ursion of the pivot angle was notdynami
ally adjusted during the equilibration phase to yield a 50% a

eptan
erate, the reason being that a small rotation about a segment 
lose to the 
ore
an yield a very large ex
ursion at the end of the 
hain. Reptation moves worksby 
utting the head o� a 
hain and gluing it to the tail of the 
hain, thatway 
hains 
an �reptate� through the voids between other 
hains. Reptationmoves are very e�
ient for sampling 
on�gurations in polymer solutions at high
on
entrations. A naive reptation move in a mi
ellar 
orona 
ould be performedby 
utting the head/tail of a 
hain, gluing it to the tail/head, and translatingthe new 
hain head su
h that it tou
hed the mi
ellar surfa
e. Sin
e the headenvironment is di�erent from the tail environment the 
riterion of mi
ros
opi
reversibility will not be ful�lled as head to tail moves will be a

epted with alarger probability than tail to head moves. However, by 
utting the tail of one
hain and the head of another 
hain, and 
ross transplanting the head to the tailof the other 
hain, and tail to the head of the �rst 
hain, and then translatingthe two 
hains su
h that they are still tethered to the 
hain a reptation moveis made that is probably mi
ros
opi
 reversible as the operation is 
ompletelyhead/tail symmetri
. However, it remains to be seen whether su
h a move 
anbe formulated for semi-�exible 
hains.
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Chapter 6Summary of arti
lesSmall-angle s
attering is an ideal te
hnique for obtaining information aboutma
ro-mole
ular stru
tures su
h as blo
k 
opolymer mi
elles, however, expres-sions for form fa
tors and stru
ture fa
tors are required for a reliable interpre-tation of the s
attering data obtained from s
attering experiments. The topi
 ofthe �rst three arti
les is the formulation of an expression for the form fa
tor ofa mi
elle with a spheri
al 
ore. The main di�
ulty is howto in
lude the e�e
tsof ex
luded volume intera
tions on the 
orona form fa
tor. The fourth paperintrodu
es a general formalism for the form and stru
ture fa
tors of generalpolymer stru
tures, su
h as star polymers with arms of blo
k 
opolymers, andmi
elles with arbitrary 
ore geometries. In the formalism it is assumed that thedi�erent subunits do not intera
t with ea
h other, however, a method of how toin
lude ex
luded volume e�e
ts at the level of a linear polymer is presented.A diblo
k 
opolymer mi
elle 
onsists of a dense 
ore surrounded by thedissolved 
hains forming a di�use 
orona. The stru
ture of the mi
ellar 
oronadepends on the 
ontour length of the tethered 
hains L, the number of 
hainsN , and on the 
ore radius R
o. From these three quantities three dimensionlessnumbers 
an be derived that quantify the stru
ture of the mi
ellar 
orona: Nthe number of 
hains, � = Rg=R
o the e�e
t of surfa
e 
urvature on the 
oronastru
ture, and � the redu
ed surfa
e 
overage. The redu
ed surfa
e 
overage isde�ned as � = N�R2go=[4�(R
o + Rgo)2℄, here Rgo is the unperturbed radiusof gyration, as opposed to Rg, whi
h is the a
tual radius of gyration. In theexpression it was assumed that the 
enter-of-mass of a 
hain is displa
ed byapproximately a distan
e Rgo from the 
ore surfa
e. As a result, the e�e
tive
ore area is 4�(R
o +Rgo)2, and the 
ross se
tional area of the 
hains is �R2go .The quantity � is expe
ted to be the 
orona analog of the redu
ed 
on-
entration 
=
� = 4�R3go�m=3, where �m is the number density of polymers.For a polymer solution 
=
� � 1 signi�es a dilute solution. In whi
h polymersbehave as a gas of hard spheres with radius Rg. The 
on�guration of 
hainsdepend only on the 
hain entropy, whi
h favours random-walk 
on�gurations,and intera
tions within the same 
hain. Entanglement between di�erent poly-mers are energeti
ally unfavourable as it redu
es the 
on�gurational degrees offreedom, i.e. the entropy. For 
=
� � 1 (and still not a melt) the solution isin the semi-dilute regime, whi
h is parti
ular to 
hain mole
ules and is 
hara
-53



54 CHAPTER 6. SUMMARY OF ARTICLESterised by the entanglement of 
hains. Thus a semi-dilute solution of polymers
onsists of a transient network of intermeshed 
hains. The 
hara
teristi
 size ofa dilute solution, the radius of gyration, is repla
ed by the 
orrelation length�. In a semi-dilute network a single 
hain 
an intera
t with many neighbour-ing 
hains, and the 
orrelation length is the length s
ale on whi
h 
onne
tivityinformation persists [21℄. On length s
ales smaller than the 
orrelation lengthintera
tions are predominantly ex
luded volume intera
tions between sites onthe same 
hain, and above the 
orrelation length no information about 
hain
onne
tivity persists.The 
orona of a mi
elle 
onsists of polymers, but these are tethered by oneend to the mi
ellar 
ore, and if the mi
ellar 
ore is 
rystalline or glassy thetethering points will be �xed on the 
ore surfa
e. For � � 1 
hains in the
orona are far from ea
h other, and intera
tions between di�erent 
hains arerare. As a result ex
luded volume intera
tions between sites on the same 
hainand 
ore expulsion in�uen
e the 
on�guration, and the 
orona will be in themushroom regime. This is similar to the situation of a dilute polymer solutionwhere 
=
� � 1. For � � 1 the 
hains form a polymeri
 brush where 
hains arestrongly stret
hed away from the surfa
e, i.e. the 
orona will be in the brushregime. No analogy exists for an ordinary polymer solution, as the ordering isindu
ed by the presen
e of a surfa
e. A broad 
rossover exists between diluteand semi-dilute solute behaviour, and a similar broad 
rossover exists betweenthe mushroom and brush regimes.It was shown in the theory 
hapter that the normalised s
attering [Fmi
elle(q =0) = 1℄ for a mi
elle with a spheri
al 
ore is given byFmi
elle(q) = (�
h + �
o)�2 ��2
hF
or + �2
o�2 + 2�
h�
oA
or�� : (6.1)F
or(q) is the 
orona form fa
tor, �2(q) the 
ore form fa
tor, A
or(q)�(q) is a
orona-
ore interferen
e fun
tion, and �
h and �
o is the total ex
ess s
atteringlengths of the 
orona and 
ore, respe
tively. As the 
ore is assumed to be spher-i
al and homogeneous the form fa
tor amplitude is �(qR
o) = 3[sin(qR
o) �qR
o 
os(qR
o)℄=(qR
o)3 [78℄. The 
ore form fa
tor 
ontains information aboutthe 
ore radius, however, this information is also present in the 
orona form fa
-tor amplitude A
or(q), and as a result the three �rst papers fo
us on the 
oronaform fa
tor and form fa
tor amplitude.In the theory se
tion it was shown that the 
orrelations of a polymer solution
an be separated into intra-
hain 
orrelations and inter-
hain 
orrelations. Ananalogous separation 
an be performed on the 
orona form fa
tor, and as shownin the theory se
tion, this yields the 
orona form fa
tor expressed through theintra-
hain s
attering F
 and inter-
hain s
attering H weighted asF
or(q) = 1NF
 + N � 1N H: (6.2)The 
hara
teristi
 length s
ale of intra-
hain 
orrelations is 
omparable tothe radius of gyration, whi
h is typi
ally smaller than the inter-
hain 
orrela-tions. The 
hara
teristi
 length s
ale of inter-
hain 
orrelations is 
omparable



55with the radius of the 
ore. Typi
ally the intra-
hain s
attering 
ontributionwill dominate at large q values, while the inter 
hain s
attering 
ontributionwill dominate at low q values, due to the di�erent 
hara
teristi
 s
ales of the
orrelations.The 
orona form fa
tor 
an also be separated into the 
ontributions from
on�gurationally averaged density and from density �u
tuation 
orrelations.The s
attering 
ontribution due to the average density is the 
orona form fa
toramplitude A
or(q) = R10 dr4�r2 sin(qr)qr �(r), where �(r) denotes the radial pro�leof the 
orona. The s
attering 
ontribution due to density �u
tuation 
orrelationsis denoted Fflu
(q). Using this separation, the s
attering 
orona s
attering 
anbe expressed as Fsol:prof(q) = 1N Fflu
 + N � Fflu
(q = 0)N A2
or: (6.3)Here the �rst term is denoted �u
tuation s
attering, while the se
ond is de-noted pro�le s
attering as it only depends on the radial pro�le. The pe
uliarweighting between the two terms is due to the fa
t that the �u
tuation s
at-tering is not normalised in the forward dire
tion. Provided an exa
t expressionfor the s
attering due to density �u
tuations Fsol:prof(q) � F
or(q). However, atpresent no analyti
al expression is available for the �u
tuation s
attering 
ontri-bution in the 
ase of mi
ellar 
orona, and as a result it has been approximatedby an RPA expression Fflu
(q) = F
(q)=[1 + �F
(q)℄, whi
h des
ribe the �u
tu-ation s
attering of a dilute/semi-dilute polymer solution. The ex
luded volumeparameter � is related to the apparent se
ond virial 
oe�
ient of the solution as� = 2A2(�)�. The expression Fsol:prof(q) has the interpretation of the s
atter-ing one would expe
t from a dilute/semi-dilute polymer solution with a radialmonomer pro�le �(r), and it is denoted solution pro�le s
attering.The �u
tuation s
attering will dominate the s
attering at large q values,as density �u
tuations 
orrelations are expe
ted to be short ranged, while thepro�le s
attering will dominate at small q values. All the 
ontributions to the
orona s
attering are shown in �gure 6.1. The pro�le s
attering (/ A2
or), and theinter-
hain s
attering H(q) dominates at small q values, but they are rapidlyde
aying fun
tions. The intra-
hain/�u
tuation s
attering 
ontribution domi-nates at high q values as expe
ted. The inter-
hain s
attering os
illates aboutzero, the absolute value is plotted and ea
h sign 
hange leads to an invertedpeak. The 
orona form fa
tor is the sum of intra-
hain and inter-
hain s
atter-ing, and as a result the minima/maxima of the 
orona form fa
tor 
orrespondto minima/maxima of the inter-
hain s
attering. The minima/maxima of the
orona form fa
tor 
orrespond to minima/maxima of the pro�le s
attering, andthe height of the minima 
an be seen to be given by the �u
tuation s
atteringSingle 
hain properties su
h as radius of gyration, the 
hain length, and theKuhn length 
an be obtained from the intra-
hain s
attering F
(q). The Haus-dor� dimension dH of the 
hains 
an also be determined, and 
arry informationabout the 
hain 
onne
tivity statisti
s. The interpretation of the inter-
hains
attering H(q) is more di�
ult, as it has a very 
omplex q dependen
e, but itdepends on the 
orona pro�le, as well as intera
tions between di�erent 
hainswhi
h introdu
e a �
orrelation hole� [20, 21℄. The pro�le s
attering 
ontribution
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Figure 6.1: The 
ontributions to the 
orona form fa
tor appropriately s
aled forthe standard mi
elle N = 44, L = 8:33b and R
o = 3:33b.(/ A
or(q)2) is simply the s
attering one would obtain from a 
ore-shell modelof the 
orona, and it only depends on the radial pro�le, hen
e the radial pro�le
an be obtained from this term. The �u
tuation s
attering is 
aused by 
hain
onne
tivity, 
hain-
hain intera
tions, and 
ore expulsion, and 
arries thermo-dynami
 information su
h as the osmoti
 
ompressibility and apparent se
ondvirial 
oe�
ient of the 
orona.A 
omparison of eq. (6.2) and eq. (6.3) shows that the s
attering due tointera
tion-indu
ed 
orrelations between di�erent 
hains have been shifted fromthe inter-
hain s
attering 
ontribution into the intra-
hain s
attering, thus pro-du
ing the �u
tuation s
attering term, while leaving the pro�le s
attering 
on-tribution.6.1 Arti
le IThe intra-
hain, inter-
hain, and form fa
tor amplitude (F
;H; and A
or, respe
-tively) s
attering 
ontributions 
an be obtained dire
tly from 
omputer simu-lations of the mi
ellar 
orona as shown in the 
hapter on Monte Carlo (MC)simulations. Computer simulations allow the partial s
attering 
ontributions,as well as the single 
hain radius of gyration, and the radial pro�le �(r) to besystemati
ally investigated as fun
tion of the parameters 
hain length, numberof 
hains, and 
ore radius denoted L;N; and R
o, respe
tively. Simulations 
analso be performed with and without ex
luded volume intera
tions for di�erentmodels of 
hains, su
h as �exible and semi-�exible 
hains. A standard mi
elle
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hosen having N = 44; L = 8:33b; and R
o = 3:33b, where the Kuhn lengthb is used as length s
ale. Ea
h of these three parameters was varied in turn,while keeping the remaining two �xed at their referen
e values. The range ofvariation was 
hosen to 
orrespond to a range of � values from 0:01 to about�ve. The radius of gyration dire
tly depends on the 
hain length, but it has onlyan indire
t dependen
e on the number of 
hains or the 
ore radius due to thee�e
ts of 
hain stret
hing. The surfa
e 
urvature � = Rg(L)=R
o is essentially�xed when the number of 
hains is varied, as 
hain stret
hing is negligible inthe simulated range.Arti
le I 
ontains a qualitative dis
ussion on how the 
orona form fa
torand form fa
tor amplitude depend on these three parameters with and withoutex
luded volume intera
tions. From the MC simulations it is seen that intra-
hain s
attering is a slowly de
aying non-os
illatory fun
tion, while both theinter-
hain s
attering and 
orona form fa
tor amplitude are rapidly de
ayingand os
illating fun
tions. Varying the number of 
hains has a large impa
t on the
orona form fa
tor, as os
illations be
ome apparent as the number of 
hains isin
reased. This is 
aused by the number of 
hains dependent weighting betweenthe os
illatory intra-
hain s
attering 
ontribution and the non-os
illating single
hain 
ontribution. However, the phase of the os
illations of the 
orona formfa
tor and form fa
tor amplitude is essentially un
hanged, when varying thenumber of 
hains. This is 
onsistent with the observation that the 
orona widthis essentially un
hanged, when the number of 
hains is varied.In
reasing the 
hain length simultaneously in
reases the width of the 
orona,i.e. shifts the 
orona away from the 
ore 
enter, this results in a shift towardssmaller q values of the 
orona form fa
tor amplitude os
illations. De
reasingthe 
ore radius shifts the 
orona 
loser to the 
ore, and a 
orresponding shiftof the form fa
tor amplitude os
illations towards larger q values are observed.This behaviour of the os
illations 
an be understood by the de�nition of the
orona form fa
tor amplitude as the Fourier transform of the radial pro�le. It isalso apparent that the os
illations of the 
orona form fa
tor are redu
ed as thesurfa
e 
overage is in
reased. This is a 
urvature e�e
t that o

urs when � ' 1.Figure 6.2 shows the s
aled 
ontributions to the 
orona form fa
tor fromthe intra-
hain and inter-
hain s
attering, and it is apparent that the os
illa-tory behaviour is repla
e by a negative power law-like behaviour, while a singlese
ondary peak remains for simulations with a large number of 
hains. A broad-ening of the se
ond se
ondary peak of the form fa
tor amplitude is observed formi
elles with a large number of 
hains atta
hed, while a broadening of the �rstse
ondary peak is observed for mi
elles with large 
ore radius or long 
hains.This broadening is probably due to the di�erent pro�le shapes obtained for alarge number of 
hains or a large 
urvature �.Arti
le I also 
ompares the 
orona form fa
tor and form fa
tor amplitudefrom simulation with and without ex
luded volume intera
tions but with 
oreexpulsion. For simulations without intera
tions the inter-
hain s
attering is re-lated to the 
orona form fa
tor amplitude as H(q) = A
or(q)2. For low surfa
e
overages no di�eren
e is observed between simulations with and without ex-
luded volume intera
tions as expe
ted, however, at high surfa
e 
overages a
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Figure 6.2: S
aled F
 and H 
ontributions to F
or for simulations varying 
hainlength L = 4b,13:67b and 38:17b (from top to bottom), the simulation withN = 327 is shown for 
omparison. The inter-
hain s
attering H 
hanges signand the absolute value is plotted, and ea
h inverted peak 
orresponds to a sign
hange, and the powerlaw tail has a negative sign.
lear de
rease in the 
orona form fa
tor 
an be seen for simulations with in-tera
tions. A shift of the form fa
tor amplitude os
illations towards smaller qvalues is observed for simulations with ex
luded volume intera
tions 
omparedto simulations without ex
luded volume intera
tions for large surfa
e 
overages.This is 
onsistent with a stret
hing of the 
orona away from the 
ore due to ex-
luded intera
tions. As the 
hain length of the standard 
on�guration is short,no ex
luded volume e�e
ts are observed on the intra-
hain s
attering ex
ept forthe longest 
hains where a di�erent power law behaviour are observed at highq values for the 
orona form fa
tor, where the intra-
hain s
attering dominates.This is 
aused by the ex
luded volume intera
tions modifying the (qRg)�dH be-haviour from dH = 2 
onsistent with a random walk to dH = 1:70 
onsistentwith an ex
luded volume 
hain.The model due to Pedersen and Gerstenberg [106, 107℄ provides expressionsfor F
; S

; and A
or as F
(q;Rg) = FDebye(qRg);A
or(q) = sin[q(R
o + dRg)℄q(R
o + dRg) A
(qRg);and



6.2. ARTICLE II 59H(q) = A2
or(q):Here the form fa
tor amplitude of a �exible non-intera
ting 
hain isA
(qRg) =[exp(�x) � 1℄=x with the abbreviation x = (qRg)2 [108℄. This model in
ludesthe e�e
ts of 
onne
tivity in the s
attering, but negle
ts 
hain expulsion fromthe 
ore region, however, this 
an be emulated by arti�
ially shifting the 
hainsaway from the 
ore surfa
e. The shift is 
ontrolled by the d parameter. Com-paring eq. (6.2) and eq. (6.3) with the Pedersen-Gerstenberg model expressionsshows that Fflu
(q) = F
(qRg) and � = 0, as a result the A2(�) = 0, whi
his 
onsistent with the fa
t that 
hain-
hain intera
tions are negle
ted in thismodel.A modi�
ation to the model due to Pedersen and Gerstenberg is presented inarti
le I, where the 
hains are shifted away from the mi
ellar 
ore, but 
onne
tedto the 
ore surfa
e by a rigid radially pointing rod.The main topi
 of arti
le I is to explore to what extend the two models 
an beused to analyse the s
attering data from the MC simulations, whi
h in
lude boththe e�e
ts of ex
luded volume intera
tions as well as semi-�exibility. Comparingthe model due to Pedersen and Gerstenberg to the modi�ed model shows thatthe modi�ed model provides more a

urate estimates of the 
hain 
enter-of-massdistan
e from the 
ore radius, while the Pedersen-Gerstenberg model providesa more a

urate estimate of the radius of gyration. The 
hain 
enter-of-massdistan
e is estimated by �tting the radial pro�le, and the addition of a rod
an be seen to provides better �ts of the 
orona form fa
tor amplitude. This isattributed to the improvement of the radial pro�le due to the addition of a rodse
tion.The 
on
lusion is that for � < 1 the Pedersen-Gerstenberg model and themodi�ed model provide a

urate estimates for the radius of gyration and 
oreradius, however, at larger surfa
e 
overages larger deviations be
omes apparentbetween parameter values estimated by �ts and the true values sampled duringthe simulations. While large deviations exist for � > 1 the �ts still providesreasonable results.6.2 Arti
le IIArti
le II presents a self-
onsistent analysis of the 
orona form fa
tor F
or(q)and the solution pro�le s
attering Fsol:prof (q). All terms in the 
orona formfa
tor and solution pro�le s
attering are obtained from the MC simulations,when the RPA expression is used for the �u
tuation s
attering Fflu
(q). Hen
e,the 
orona form fa
tor and solution pro�le s
attering 
an be 
ompared withoutintrodu
ing any model expressions for intra-
hain s
attering and radial pro�le,and this 
omparison provides a way of investigating the validity of the RPAapproximation for the �u
tuation s
attering.The intra-
hain, inter-
hain and 
orona form fa
tor amplitude F
;H; andA
or are known from simulations. The ex
luded volume parameter 
an be ob-tained by letting F
or(q) = Fsol:prof(q), and sin
e A
or(q) os
illates about zero,
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an be 
hosen, su
h that A
or(q0) = 0. Then the ex
luded volumeparameter is � = (N � 1)H(q0)F
(q0) [F
(q0) + (N � 1)H(q0)℄ : (6.4)Data are sampled at dis
rete q values, and a linear interpolation was usedfor �nding the smallest value q0 where A
or(q0) = 0, as well as estimating valuesH(q0) and F
(q0). Error bars on � was estimated by 
al
ulating the varian
e ofthe ensemble of � values 
onsistent with the error bars on the s
attering data[82℄. The 
orona form fa
tor amplitude has several minima in general, and thesmallest q0 value is 
hosen as the inter-
hain s
attering typi
ally has the smallesterror bar at low q values.
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Figure 6.3: Comparison between Fflu
 as obtained from simulations, andFRPA = F
=(1 + �F
) using the intra-
hain s
attering F
 from 
omputersimulations. The ex
luded volume parameter � are obtained from eq. (6.4).Curves are from top to bottom simulations varying number of 
hains N =3; 66; 131; 327, varying 
ore radius R
o = 27:78b; 9:44b; 2:53b; 1:48b (shifted downone de
ades), and varying 
hain length L = 2b; 8:33b; 13:67b; 38:17b (shifteddown two de
ades).Based on the ex
luded volume parameter, the �u
tuation s
attering 
on-tribution Fflu
 
an be obtained from simulations and 
ompared with the RPAapproximation using simulation data for the intra-
hain s
attering F
. This isshown in �gure 6.3, and there is an ex
ellent agreement between the two ex-pressions for the �u
tuation s
attering.A similar ex
ellent agreement is is obtained between the 
orona form fa
tor



6.2. ARTICLE II 61and the solution pro�le s
attering for the simulation s
attering as shown in�gures 6.4, 6.5, and 6.6. This validates our approximation of using an RPAexpression for the �u
tuation s
attering 
ontribution. From the �gures 6.4, 6.5,and 6.6 it 
an be seen that the �u
tuation s
attering Fflu
 de�nes the depthsof the minima of the solution pro�le s
attering, and it 
an also be seen that thepro�le s
attering dominates the forward s
attering as expe
ted. The forwards
attering due to density �u
tuation de
reases with in
reasing surfa
e 
overage
onsistent with the 
on
entration dependen
e of the s
attering from an ordinarypolymer solution.
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Figure 6.4: F
or (thi
k lines), Fsol:prof (symbols), and Fflu
 (thin dashed line)varying number of 
hains N = 3; 8; 22; 44; 87; and 131, 
orresponding to � =0:05; 0:13; 0:36; 0:72; 1:43 and 2:15 (
ir
le, box, diamond, star, plus and 
rossfrom bottom to top). The 
urves are normalised to 
oin
ide at large q values.This is the reason why the 
orona form fa
tor was seen to de
rease in ar-ti
le I, when 
omparing simulations with and without intera
tions. Withoutex
luded volume intera
tions Fflu
(q) = F
(qRg) and H(q) = A2
or(q), while inthe presen
e of ex
luded volume intera
tions the �u
tuation s
attering 
ontri-bution de
reases and the inter-
hain s
attering is modi�ed due to the presenseof the �
orrelation hole�..For an ordinary polymer solution it is predi
ted that the ex
luded volumeparameter has a universal dependen
e on the redu
ed 
on
entration as � /(
=
�)f(
=
�), where f(x) is some fun
tion, that is 
onstant for small x [73℄.Plotting the ex
luded volume parameter � against � as in �gure 6.7 showsthat the data points falls approximately on a power law relation �(�) = ���with � = 1:35 � 0:02 and � = 0:95 � 0:02. That ex
luded volume parameters
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Figure 6.5: F
or (thi
k lines), Fsol:prof (symbols), and Fflu
 (thin dashed line)varying 
ore radius R
o = 1:48b; 2:53b; 4:94b; and 9:44b, 
orresponding to � =0:13; 0:36; 1:07; and 2:10 (
ir
le, box, diamond, and 
ross from bottom to top).from simulations varying the number of 
hains, 
hain length and 
ore radius
ollapses on a 
ommon 
urve, shows that the redu
ed surfa
e 
overage � isthe 
hara
teristi
 redu
ed parameter whi
h des
ribes the 
orona intera
tions.Note the grafting density N=(4�R2
o) is expe
ted to be 
hara
teristi
 parameterin the brush regime. The deviations observed at large and small 
overages areattributed to a weak dependen
y on the number of 
hains and surfa
e 
urvature.Deviations are also observed for simulations with only two and four statisti
allyindependent segments.As shown in the theory 
hapter a very simple relation exists between the�u
tuation s
attering and the osmoti
 
ompressibility. The 
ompressibility �ful�ls � = F�1flu
(q = 0) = 1 + �, and thus the deviations of � at low surfa
e
overages are dominated by one. The result is a universal behaviour of the
ompressibility for surfa
e 
overages, ex
ept for large surfa
e 
overages wheredeviations are apparent. These are attributed to the e�e
ts of the number of
hains and surfa
e 
urvature on the 
orona stru
ture.The solution pro�le s
attering expression Fsol:prof using the RPA expres-sion for the �u
tuation s
attering 
ontribution has the interpretation of beingthe s
attering from a dilute/semi-dilute solution with a radial pro�le. The self-
onsistent analysis shows that the solution pro�le expression provides an ex
el-lent des
ription of the 
orona form fa
tor. On the basis of the agreement betweenthe solution pro�le s
attering and the simulated s
attering is we 
on
lude thatthe 
orona of a mi
elle 
an be regarded as a polymer solution with a 
ertain
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Figure 6.6: F
or (thi
k lines), Fsol:prof (symbols), and Fflu
 (thin dashed line)varying 
hain length L = 2b; 4b; 13:67b; and 38:17b, 
orresponding to � =0:16; 0:35; 1:11; and 2:35 using (
ir
le, box, diamond, and 
ross from top tobottom).radial pro�le. As the 
orona width is 
omparable to the radius of gyration the
orona is quasi-two dimensional.6.3 Arti
le IIIWhile the self-
onsistent analysis validates that the solution pro�le expressionreprodu
ing the simulated s
attering, it does not 
on�rm that the solution pro�leexpression 
an be used for estimating parameters for physi
al parameters ofinterest when analysing experimental data. Hen
e, the aim of the arti
le III isto formulate expressions for Fflu
 and A
or whi
h 
an be used to extra
t physi
alparameters, su
h as the radius of gyration, the ex
luded volume parameter �,and the radial pro�le for a mi
elle by �tting experimental data. For Fflu
(q) thefollowing equations was usedFflu
(qRg) = FDaniels � q2R2ge(L=b)�1 + �FDebye(q2R2g) ; (6.5)FDaniels(x) = FDebye(x) + b15L �4 + 7x�1 � (11 + 7x�1)e�x� ;
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Figure 6.7: The osmoti
 
ompressibility � plotted against redu
ed surfa
e 
ov-erage for simulations varying number of 
hains (
ir
le), varying 
hain length(box), and varying 
ore radius (diamond). The inset shows the ex
luded volumeparameter � plotted against redu
ed surfa
e 
overage. The line in the inset isthe power law �(�) = 1:35�0:95 and the 
orresponding osmoti
 
ompressibilityis shown as the line on the �gure.FDebye(x) = 2[x� 1 + exp(�x)℄x2 ;and e(n) = 1� 32n + 32n2 � 34n3 �1� e�2n� :The equation is based on the RPA expression, but uses a 
hain form fa
torbased on the Daniels distribution in the denominator, while using the Debyeform fa
tor in the numerator. This expression has been shown to provide a quitea

urate des
ription of the s
attering from a semi-dilute solution of semi-�exiblepolymers [92℄. The radius of gyration in the Daniels form fa
tor is 
orre
ted bythe Kratky-Porod expansion fa
tor due to semi-�exibility, whi
h was des
ribedin the theory se
tion. The parameters are Rg, the radius of gyration, and �.The ex
luded volume parameter, the ratio b=L was �xed at the value of thesimulation, in order to redu
e the number of �t parameters.The 
orona form fa
tor amplitude is the Fourier transform of the radialpro�le, and three radial pro�les was used. The �rst is a Box with a Gaussiantail (abbreviated BoxGauss) and given by



6.3. ARTICLE III 65
'BoxGauss(r) = 8><>: 0 r < R
oB R
o � r < R
hB exp ��(r �R
h)2=(2s2)� R
h � r :The last two pro�les are two Maximum Entropy pro�les where knowledge ofthe �rst two (abbreviated the ME2 pro�le) or three momenta (abbreviated theME3 pro�le) was assumed, respe
tively. The radial pro�le is given by'ME(r) = ( 0 r < R
oB exp [�Pmn=1 an(r �R
o)n℄ r � R
o ;where B is a normalisation 
onstant. For both pro�les it is assumed that no
hains enter the 
ore region. While the BoxGauss pro�le is an arbitrarily 
hosenempiri
al pro�le, the maximum entropy pro�les are less arbitrary. As arguedin the theory se
tion, a maximum entropy pro�le is the least biased pro�le
onsistent with the requirements that 
hains do not enter the 
ore region, thatthe pro�le is normalised, and that we posess knowledge of �rst m moments.Expressions for A
or(q) 
orresponding to the BoxGauss and ME2 pro�les (m =2) are given in the third arti
le, while the form fa
tor amplitude 
orrespondingto the ME3 pro�le (m = 3) is obtained by numeri
al integration.The simulation results for F
or(q) and A
or(q) were simultaneously �ttedby the 
orresponding expressions for Fsol:prof (q) and A
or(q), where the 
oronaform fa
tor amplitude were derived from the BoxGauss, ME2, and ME3 radialpro�les. The radius of gyration, the ex
luded volume parameter, and the twoor three parameters required by the radial pro�le were �tted. For � < 1 all �tsprovides very similar estimates of the �t parameters for the three pro�les, andthe pro�les estimated by the �ts are in good agreement with ea
h other and thesimulated data. For � > 1 the �ts using the ME3 pro�le provides signi�
antlybetter �ts 
ompared to the BoxGauss and ME2 pro�les. This improvement ofthe 
orona s
attering �ts is dire
tly related to the improvement of the �ts ofthe form fa
tor amplitude. Ex
ellent agreement was also obtained 
omparingthe radius of gyration and radial pro�les obtained from simulations to thoseestimated by the �ts. The �(�) dependen
e obtained from �tting � is similar tothat obtained from the self-
onsistent analysis, however, with slightly modi�ed
onstant and exponent: � = 1:42 � 0:03 and � = 1:04 � 0:02. This di�eren
e isattributed to systemati
 e�e
ts 
aused by the expressions used for the �ts.Arti
le II and III demonstrate that the expression for the solution pro�les
attering provides an a

urate des
ription of the mi
ellar 
orona s
attering,and that the expression 
an be used to obtain reliable estimates of the physi
alparameters: the single 
hain radius of gyration, the ex
luded volume parameter,and the radial pro�le. From the ex
luded volume 
oe�
ient thermodynami
information about the 
orona 
an be obtained from s
attering experiments, justas for a polymer solution. The di�eren
e is that for a polymer solution all theobserved s
attering is due to Fflu
. Tethering 
hains to the 
ore has the e�e
t of
reating an additional A2
or(q) s
attering 
ontribution due to the radial pro�leof the polymer layer as it is 
on�ned to the mi
ellar surfa
e, and this s
attering
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tion where the value Fflu
(q = 0) is of parti
ularinterest.6.4 Arti
le IVArti
le IV presents a formalism for 
al
ulating the form fa
tor and inter-parti
lestru
ture fa
tor of various stru
tures, su
h as triblo
k 
opolymers stars, andmi
elles with arbitrary 
ore geometries. The arti
le proves that the form fa
torof a 
omposite parti
le 
onsisting of non-intera
ting subunits 
an be written asF (q) =  Xi �i!�28<:Xi �2i Fi + 2Xj<k �j�kAj  njkYi=1	ijk!Ak9=; :The parti
le is 
onsidered as 
onsisting of a number of non-intera
ting sub-units referred to by the indi
es i,j and k. Ea
h subunit has a referen
e point,whi
h 
ould be the 
enter of a mi
ellar 
ore, the end of a 
hain, or the bound-ary between two adja
ent blo
ks on a 
opolymer. �i denotes the total ex
esss
attering length of the i'th subunit, while Fi is the Fourier transform of thesite-site 
orrelation fun
tion, i.e. the form fa
tor of the i'th subunit. Ai is theFourier transform of the site-to-referen
e point distribution, i.e. the form fa
toramplitude. For any subunit j and k it is assumed that there exists a uniquepath of njk steps along referen
e points of other subunits 
onne
ting referen
epoints subunit j and k. This 
ould for instan
e be the blo
k boundaries alonga 5-blo
k 
opolymer. The Fourier transform of the distan
e distribution of thei'th step between the j and k subunits is denoted 	ijk, i.e. it is a phase fa
tor.This expression has the following interpretation. The distan
e between twosites on two di�erent subunits j and k 
an be written as the a sum of a number ofsteps, 
orresponding to site-to-referen
e point step, and a numner of referen
e-to-referen
e point steps until the se
ond subunit is rea
hed, and �nally a stepfrom the referen
e point of the se
ond subunit to the se
ond site.Similarly the pair-distan
e distribution between two di�erent sites on twodi�erent subunits 
an be fa
torised into the 
onvolution of distributions repre-senting the site-to-referen
e point step (yielding form fa
tor amplitude Aj), aprodu
t of the distributions representing the referen
e-to-referen
e point steps(yielding phase fa
tors 	ijk), and a step from the referen
e point to a site insubunit k (yielding Ak). This is due to the fa
t that the Fourier transform of a
onvolution is simply the produ
t of the Fourier transforms. This is only trueif the 
on�gurational average of the pair-distan
e distribution 
an be regardedas the produ
t of 
on�gurational averages of the individual steps, whi
h is onlytrue if the subunits are non-intera
ting. Hen
e, this expression is valid for anya
y
li
 stru
tures of subunits, where the intera
tions between di�erent subunitsare negligible, while intera
tions within the subunit 
an be in
orporated in theexpressions for Fi and Ai. Hen
e, all 
onne
tivity information about the stru
-ture is in
luded, even though intera
tions between subunits are negle
ted. Inarti
le IV it is shown how to in
lude ex
luded volume intera
tions on the levelof a linear 
hains of polymer subunits, su
h as a blo
k 
opolymer.
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Figure 6.8: Illustration of possible the site-site 
orrelations of a mi
ellar stru
-ture.An example: assuming the parti
le is a mi
elle whi
h 
onsists of two subunits
hains in the 
orona (index �
�) and a 
ore (index �s�). No assumptions aremade about the 
ore geometry. Then the possible site-site 
orrelation fun
tionsare intra-
hain 
orrelations, inter-
hain 
orrelations, 
hain-
ore 
orrelations and
ore-
ore 
orrelations, as shown in �gure 6.8.The intra-
hain s
attering F
 
an be 
al
ulated from the pair-distan
e distri-bution within a 
hain, while the 
ore form fa
tor Fs 
an be 
al
ulated from thepair-distan
e distribution between sites within the 
ore. The distan
e betweentwo sites within the 
ore 
an be written as two steps: a ve
tor from one siteto the 
enter, and a step from the 
enter to the se
ond site, as shown in �gure6.8. Thus the pair-distan
e distribution 
an be written as the 
onvolution of twoidenti
al step probability distributions Ps(r) des
ribing the probability for a siteat position r relative to the 
enter being within the 
ore for a �xed 
ore orien-tation. Denoting by As(q) the Fourier transformation of the distribution Ps(r);the pair-distan
e distribution is simply for 
ore form fa
tor Fs(q) = A2s(q) byvirtue of the Fourier theorem for 
onvolutions.The ve
tor distan
e between a parti
ular site on a 
hain and another sitein the 
ore 
an be written as the sum of three steps: a ve
tor from the siteto the tethering point of the 
hain, a ve
tor from the tethering point to the
ore 
enter, and a ve
tor from the 
ore 
enter to the site in the 
ore. Thus thepair-distan
e distribution 
an be written as the 
onvolution of the probabilitydistributions of the three steps, and the Fourier transform of this 
onvolutionyields the produ
t of the Fourier transforms of the probability distributions. Thestep from a site on a 
hain to the tethering point is the form fa
tor amplitudeof the 
hain yields a fa
tor A
(q), the step from a site on the 
ore surfa
e to the
ore 
enter yields a fa
tor 	s(q), and the step from the 
ore 
enter to the site in
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ore yields As(q). Thus the 
hain-
ore s
attering 
ontribution has the formA
(q)	s(q)As(q), where 	s(q) is the 
ore surfa
e phase fa
tor.The distan
e between two parti
ular sites on two di�erent 
hains 
an bewritten as the sum of four steps: a step from the site to the tethering point,from tethering point to the 
ore 
enter, from the 
ore 
enter to another tetheringpoint, and from the tethering point to the site on that 
hain. Thus the inter-
hain s
attering has the form A
(q)	s(q)	s(q)A
(q), as illustrated on �gure6.8.Weighting the 
ontributions with the proper total s
attering lengths andtaking 
are of the weighing between intra- and inter-
hain 
orrelations the formfa
tor of a mi
elle with an arbitrary 
ore geometry and non-intera
ting 
hainsis Fmi
(q) = (�
 + �s)�2*�2sA2s(q) + �2
N F
(q)+�2
 (N � 1)N A2
(q)	2s(q) + 2�
�sA
(q)	s(q)As(q)�o : (6.6)The terms are the 
ore form fa
tor, the intra-
hain s
attering, the inter-
hains
attering, and the 
hain-
ore interferen
e fun
tion. The intra-
hain s
atteringis proportional to the number of 
hains N , while the inter-
hain s
attering isproportional to the number of pairs of 
hains N(N � 1), while the total isN2. This explains the weighting between intra-
hain and inter-
hain s
attering
ontributions, an orientational average has to be performed on the produ
t ofFourier transforms as the 
ore surfa
e is rigidly atta
hed to the 
ore.In the spe
ial 
ase of a spheri
al 
ore, the probability of a ve
tor r is withinthe 
ore is Ps(r) = �(jrj � R
o)=(4�R3
o=3), where �(x) is the step fun
tion(�(x) = 1 for x � 0 and �(x) = 0 for x < 0 ). The probability for a ve
tor r tobe lo
ated on the 
ore surfa
e is Psurf (r) = Æ(jrj � R
o)=(4�R2
o). From thesesimple distributions the surfa
e phase fa
tor and 
ore form fa
tor amplitude aregiven by 	s(q) = Z 10 dr4�r2 sin(qr)=(qr)Psurf (r) = sin(qR
o)=(qR
o)and As(q) = Z 10 dr4�r2 sin(qr)=(qr)Ps(r) = �(qR
o):Thus the mi
ellar form fa
tor eq. (6.6) be
omesFmi
(q) = (�
 + �s)�2  �2s�2(qR
o) + �2
N F
(q)+�2
 (N � 1)N A2
(q)� sin(qR
o)qR
o �2 + 2�
�sA
(q)sin(qR
o)qR
o �(qR
o)! :This expression redu
es to the expression for the mi
ellar s
attering pre-sented at the start of this 
hapter (eq. 6.1) using the abbreviations of the



6.4. ARTICLE IV 69Pedersen-Gerstenberg model with d = 0, and 
omparing eqs. (6.6, 6.2 and 6.3)suggests that solution pro�le form fa
tor for a mi
elle with an arbitrary 
oregeometry is Fmi
(q) = (�
 + �s)�2*�2sA2s(q) + �2
N Fflu
(q)+�2
 [N � Fflu
(q = 0)℄N A2
or(q) + 2�
�sA
or(q)As(q)�o ; (6.7)The rationale behind the derivation of the form fa
tor 
an be used to derivean expression for the inter-parti
le stru
ture fa
tor. The ve
tor between two siteson two subunits on two di�erent aggregates 
an be regarded as 
onsisting of anumber of steps from the site to the referen
e point of that subunit, steps alonga path from referen
e-to-referen
e points until the aggregate 
entre is rea
hed.Then a step from the 
enter of one aggregate to the 
enter of another aggregate,followed by a path from that 
enter along referen
e points of subunits until these
ond subunit is rea
hed, and a step to the �nal site on that subunit. Theintermole
ular stru
ture fa
tor isHss(q) =  Xi �i!�2(Xk �kAk  n
kYi=1	i
;k!)2 (S

(q)� 1) ;Here index �
� denotes the 
enter of the aggregate, and S

(q) is the 
enter-to-
enter stru
ture fa
tor. The term in the bra
ked is the form fa
tor amplitudeA of the entire parti
le. The s
attering from a solution of aggregates is the sumof intra-mole
ular and inter-mole
ular s
attering given byP (q) = F (q) +Hss(q) = F (q)Sapp(q);where the e�e
tive stru
ture fa
tor is given bySapp(q) = Hss(q)F (q) + 1:In the spe
ial 
ase, where aggregates 
onsist of a spheri
al symmetri
 aggre-gate with a form fa
tor amplitude A(q) then Hss(q) = A(q)2(S

(q) � 1) andF (q) = A2(qr), whi
h leads to Sapp(q) = S

(q). Thus the apparent stru
turefa
tor 
orresponds to the 
enter-to-
enter stru
ture fa
tor for spheri
ally sym-metri
 s
atterers. This is a well known result for monodisperse suspension ofspheri
al s
atterers [109℄.The inter-mole
ular stru
ture fa
tor for a solution of non-intera
ting mi
elles
an easily be shown to beHmi
(q) = (�
 + �s)�2 (h�sAs(q) + �
A
or(q)io)2 (S

(q)� 1) :The 
orona form fa
tor amplitude is given by a generalised 
ore-shell modelexpression A
or(q) = R1R
o drA(r)	s(q; r)�(r), where �(r) is the area density ofs
atterers in the r sized shell, and A(r) is the area of that shell. It remains tovalidate these generalisations of the mi
ellar s
attering.
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A Monte Carlo study on the effect of excluded volume interactions
on the scattering from block copolymer micelles

Carsten Svaneborg and Jan Skov Pedersen
Condensed Matter Physics and Chemistry Department, Riso” National Laboratory, DK-4000 Roskilde,
Denmark

~Received 26 January 2000; accepted 10 March 2000!

Effects of excluded volume interaction on the form factor of a block copolymer micelle model have
been investigated by performing Monte Carlo simulations. The micelles are modeled as a corona of
semi-flexible chains tethered to a spherical core. Simulated form factors are analyzed using the
model proposed by Pedersen and Gerstenberg. A slightly modified model is presented, in which
chains consists of a radially pointing rigid rod, onto which a Gaussian chain is attached. The straight
section emulates chain stretching near the micelle core. Both models are fitted to the simulation data
using two parameters, that describes the individual chains: the radius of gyration, and the average
center-of-mass distance to the micelle core. Based on a comparison between parameters obtained
from fits, and those obtained directly from the simulation, it is concluded that the models provide
good estimates for the radius of gyration and the chain center-of-mass distance for a low surface
coverage, while systematic deviations are observed for high surface coverage, where chains begin
to overlap, and excluded volume interactions becomes significant. ©2000 American Institute of
Physics. @S0021-9606~00!51321-X#

I. INTRODUCTION

When diblock copolymers are put into a selective sol-
vent, that is, a good solvent for one block, and a poor solvent
for the other, the copolymers spontaneously self-assemble
into aggregates. These micellar aggregates have a dense core
and a corona of solvated polymers chains. Different mor-
phologies will self-assemble upon variation of the concentra-
tion, solvent or the relative length of the two blocks. These
morphologies include micelles with spherical, elliptical or
cylindrical cores. At high volume fractions the aggregates
might order into structures such as: crystals structures of
spherical micelles, hexagonal rod structures of cylindrical
micelles, or the micellar aggregates can coalesce forming a
number of continuous structures as for instance a lamellae
structure.1,2 These colloidal polymer solutions are examples
of complex fluids, which exhibit novel and interesting physi-
cal phenomena.3–6

Light scattering, small angle neutron or x-ray scattering
~LS, SANS and SAXS, respectively! are powerful techniques
for obtaining structural information about colloidal
solutions.7 SANS combined with contrast variation tech-
niques is an especially powerful technique, as it allows for
the separation of the contributions from the various colloid
constituents. However, it is very difficult or even impossible
to invert the measured scattering intensities and deduce the
constituents structure directly, since all phase information is
lost in the measurement process. Instead, structures must be
inferred by fitting models to the experimental data.8 This
necessitates the development of analytical models, or semi-
analytical models as one obtains by parameterization of re-
sults from computer simulations, to allow for a detailed in-
terpretation of the experimental data. Furthermore computer
simulations allows ‘‘computer experiments’’ to be per-

formed, which emulates an experiment, but an experiment
carried out on a well-defined model system. The simulation
results can then be analyzed as real experimental data, and
from the analysis correlations between scattering data and
structural properties of the simulated model can be deduced,
and limits of validity can be established for particular mod-
els.

The aim of the present work is to investigate the effects
of inter-chain as well as intra-chain excluded volume inter-
actions on the scattering form factor of micelles with a
spherical core, and to examine to what extent the model pro-
posed by Pedersen and Gerstenberg9 can be applied. This
analytical model accurately describes the scattering from mi-
celles having chains that do not interact among themselves
and with the core. Core expulsion can be emulated in this
model by lifting the chains away from the core surface. We
present a modified model, which improves the Pedersen Ger-
stenberg model, when chains are excluded from the core. In
this model the chain section is joined to the core surface by
means of a rigid radially pointing rod. We also suggest im-
provements of the models that, to some extent, include ef-
fects of excluded volume interactions. We have used Monte
Carlo simulations as a tool to investigate the excluded vol-
ume effects, and modeled the micelle as a number of semi-
flexible chains tethered to a spherical core. These chains in-
teract among themselves and with the core via excluded
volume interactions. We have also made a number of simu-
lations with core expulsion, but without chain interactions.
This allows us to gauge the effects of excluded volume ef-
fects on the scattering from the polymer corona.

To our knowledge, no study has previously been made
that focuses on the form factor of micelles with chains with
excluded volume interactions. Previous studies of the struc-
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ture of chains tethered to micelles have predominantly fo-
cused on determining the radial density profile,10–12 or the
conformational properties of chains in the core.13 However,
the radial density profile contains insufficient information for
determining the full scattering function, because micelles are
not centro-symmetric objects, as is assumed for core-shell
models.14 Absent from these models are the correlations due
to the chain connectivity, and the lateral density fluctuations
arising from the interactions between different chains. Simi-
lar arguments hold true for self-consistent field theories,15

due to the large fluctuations about the most probable path at
low surface coverage fractions. Core-shell models are not
applicable to any of the simulations presented in this paper.

This paper is organized as follows: In Sec. II we present
the two analytical models; in Sec. III we describe the Monte
Carlo simulations, and define the parameters that we sample
during a simulation. In Sec. IV we report the results, com-
pare simulations with and without interactions, and discuss
the models in the context of the simulations, and Sec. V
contains a summary of our findings. An Appendix contains
some practical information on how the partial scattering
functions are sampled.

II. ANALYTICAL MODELS

Let q denote the length of the scattering vector, the nor-
malized form factor@letting Fmicelle(q50)51] of a block
copolymer micelle with a spherical core can be written

Fmicelle~q !5

1

~rc1rs!
2

@rs
2F2~q !1rc

2Fct~q !

12rcrsScs~q !F~q !#. ~1!

The form factor is comprised of three partial scattering con-
tributions: a core–core contributionF2, a chain–chain con-
tribution Fct , and a chain–core contributionScsF @for core-
shell modelsFct(q)5Scs(q)2]. In this paper the partial
scattering contributions are normalized to unity in theq
→0 limit. The total chain and total core excess scattering
lengths are denotedrc and rs , respectively, and they are
defined as rc5NVc(rchain2rsolvent) and rs5NVs(rcore

2rsolvent), whereVc and Vs are the volume of a dissolved
and core chain, respectively. A diblock copolymer micelle
have implicitly been assumed, such thatN denotes the aggre-
gation number. Finally the scattering length density of a dis-
solved chain, a core chain, and the solvent is denotedrchain,
rcore and rsolvent, respectively. The total chain scattering
function can be subdivided into two contributions: intra-
chain correlations denotedFc , which arises from self-
correlations within each chain, and is strongly influenced by
chain connectivity, and inter-chain correlations denotedScc ,
which is an interference term, that describe correlations be-
tween different chains. When these partial contributions are
normalized, the total chain scattering function becomes:

Fct~q !5

1

N
Fc~q !1

N21

N
Scc~q !. ~2!

The length scales of a single chain are:Rg the radius of
gyration, b the Kuhn length,L is the contour length of the

chain, andl0 the step length. The radius of gyration measures
the chain spatial extent. The Kuhn length measures the char-
acteristic contour length of a semi-flexible chain, on which
bond orientations are correlated; for a flexible chain the
Kuhn and step lengths are equal. Scattering techniques probe
correlations on various length scales, and we expect that the
single chain scattering can be divided into three qualitative
different regions: ForqRg less than unity~the Guinier re-
gion! the chains appear to be pointlike objects~Hausdorff
dimension 0) andFc'1. In the range whereqRg are larger
than unity andqb is less than unity, the random walk nature
of the chains are probed. Since a random walk is a fractal
object with Hausdorff dimension 2, we expect a scattering
function that behaves asFc}(qRg)22. In the regime where
qb is larger than unity, chains are probed on distances, where
the bonds orientations are correlated and they exhibit rigid
rod like correlations with a Hausdorff dimension of 1, and
we expect a scattering function that behaves asFc

}(qL)21. The actual crossovers between these regions are
very broad, making it difficult to accurately estimateRg and
b directly from location of the crossovers on a simulated
Fc(q) curve.

The characteristic scale of inter-chain correlationsRch is
comparable to the radius of the micelle. Because both the
contributions to the total chain scattering function are nor-
malized, inter-chain correlations will dominate the scattering
for low q values, since the core radius usually is larger than
the radius of gyration. Because the characteristic intra-chain
distances are small, intra-chain scattering will dominate the
total scattering at highq values.

If we assume the micelle core is a homogeneous sphere
with radiusRco , the normalized form factor amplitude for
the core is:16

F~q,Rco!5

3@sin~qRco!2qRco cos~qRco!#

~qRco!3
. ~3!

The remaining contributions to the micellar form factor
are given by:9

Fc~q,Rg!5Fchain~q,Rg!, ~4!

Scc~q,Rg ,Rcm!5cchain
2 ~q,Rg!Fsin~qRcm!

qRcm
G2

, ~5!

and

Scs~q,Rg ,Rcm!5cchain~q,Rg!
sin~qRcm!

qRcm
. ~6!

If we assume that excluded volume interactions are ab-
sent, and that chains are flexible, they are described by:

Fchain~q,Rg!5

2~e2x
211x !

x2
, ~7!

and

cchain~q,Rg!5

12e2x

x
, ~8!

wherex5(qRg)2.
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Fchain is the form factor of a flexible chain given by

Debye,17 andcchain is the form factor amplitude of a flexible
chain given by Hammouda.18 Rcm is the chain center-of-
mass~CM! radius, i.e., the distance from the core center to
the CM of the individual chains. Core expulsion is mimicked
by letting Rcm5Rco1dRg ~with d'1), which lifts chains
away from the core surface. This has been shown by Monte
Carlo simulations9 to be a good approximation of core ex-
pulsion. We refer to this model as ‘‘model 1’’ in the remain-
der of this paper.

We have carried out a modification of model 1 by adding
a radially pointing rod, of lengthl5Rcm2Rco that joins the
chain originating at the chain CM to the core surface
~‘‘model 2’’ !. The rod section attempts to mimic the effect of
chain stretching close to the micelle core surface. LetL be
the total contour length of the rod and chain sections, and
x5l/L the fraction of polymer in the rod section. Then the
partial scattering contributions are given by~suppressing
function arguments for clarity!:

Fc~q,Rg ,Rcm ,l !5~12x !2Fchain1x2F rod

12x~x21!cchain

Si~ql !

ql
, ~9!

Scc~q,Rg ,Rcm ,l !5~12x !2cchain
2 Fsin~qRcm!

qRcm
G2

1x2w rod
2

12x~12x !cchainw rod

sin~qRcm!

qRcm
,

~10!

Scs~q,Rg ,Rcm ,l !5~12x !cchain

sin~qRcm!

qRcm
1xw rod.

~11!

The individual rods are described by the form factor of
an infinite thin rod,19 and the form factor amplitude of a rod,
respectively:

F rod~q,l !5

2

lq
Si~ql !2

4

~ lq !2
sin2F lq

2 G , ~12!

and

w rod~q,l,Rcm ,Rco!5

1

ql
@Si~qRcm!2Si~qRco!#, ~13!

with Si(x)5*0
x (t21 sint) dt.

The rod section will usually be short (l;Rg) compared
to the contour length of the chain section, and thus give only
a small correction to the total chain scattering. However, the
addition of the nonoscillatory rod term to the oscillatory
chain term in scattering expression Eq.~11! is more pro-
nounced, as it influences both the phase and amplitude of the
oscillations. The equations defining model 1 and 2, Eqs.~4!–
~6! and Eqs.~9!–~11!, are purely due to the geometrical as-
sumptions: The chain CMs are evenly distributed on a sphere
with radiusRcm , and that chains are tethered to the end of a
rod; whereas the objects that scatter radiation are described
by the form factor and form factor amplitudes, Eqs.~7!, ~8!,
~12!, and ~13!. Neither model 1 nor model 2 accounts for

chain–chain interactions in the corona, both models, how-
ever, take chain connectivity explicitly into account, and
they mimic the chain exclusion from the core by raising the
chain CM above the core surface. Since chains are described
by the Debye and Hammouda expressions, finite length ef-
fects and effects due semi-flexibility are not included. In the
Rcm→0 limit model 1 reduces to the expression for a star
polymer.20

III. MONTE CARLO SIMULATION

In the simulation we model the micelle as a spherical
core, havingN semi-flexible chains tethered to the surface.
Each chain in turn consists ofn bonds~or n11 vertices! of
length l0 . The valence angle between subsequent bonds is
fixed at 135.585 degrees, while the dihedral angle is free.
This results in a Kuhn lengthb56l0 , such that the radius of
gyration of a flexible and semi-flexible chain coincides in the
long chain limit.

We introduce excluded volume interactions by placing
hard spheres along each of the chains, and a large hard
sphere at the core center. We have 6 vertices per Kuhn length
of chain, which corresponds to one sphere at each vertex. We
have chosen the hard-sphere radiusr50.1b, a choice which
reproduces the binary cluster integral of polystyrene in a
good solvent.21

Each of the tethered chains on the micelle is initially
generated by growing it from a root. A root consists two
bonds, the first bond originating at the micelle core surface
and a virtual zeroth bond ending on the surface, each of the
two bonds point in a random direction. The two root bonds
and their cross product defines a coordinate system, which
can be used as a basis for adding a new bonds with a given
valence and dihedral angle, and this procedure is easily iter-
ated.

The micellar corona is generated by creating roots until
all chains have roots, then bonds are successively added to
the shortest chain, until all chains have the desired number of
bonds. Every time a root is created or a bond is added, it is
checked for overlap with the existing chains and the core. If
an overlap is detected then 20 bonds are removed from the
chain. If this includes removing the root, then a new root is
generated at a different location. A micelle with a dense
corona is difficult to generate, therefore we artificially reduce
the chance for overlap during the creation of the initial mi-
celle configuration, by limiting the range of the dihedral
angle to the interval@260°,60°#. This tends to stretch the
chains, thereby reducing the probability for overlap, while
the micelle is grown.

During the Monte Carlo~MC! simulation we update
chains using the pivot algorithm of Stellman and Gans.22 The
chain vertices are periodically corrected for numerical errors
introduced by the repeated multiplication of rotation matrices
during the pivot moves; our correction algorithm is similar to
that used by Stellman and Gans. Furthermore, we use two
types of surface updates; the first type moves the chain on
the core surface by pivoting the entire chain about core cen-
ter. The second type reorientates the chain by pivoting it
about the tether vertex. The zeroth bond is not used when
collecting data, nor is it used when checking for chain over-
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lap; however, it is pivoted with the rest of the chain, and this
ensures that the first two bonds define a local coordinate
system for the chain, that is, rotated along with all the MC
moves, which provides a constant basis from which to run
the Stellman and Gans correction algorithm.

After each chain update, we check for core overlap,
intra-chain overlap, and inter-chain overlap. An update is
rejected if it overlaps. Both types of chain checks are per-
formed using the ‘‘zippering method.’’23 The inter-chain
check is performed in an order where chains that previously
overlapped with the updated chain are checked first. This is a
heuristic attempt to check chains more prone to overlap be-
fore others, which on average reduces the time spent on
checking for inter-chain overlap.

After a micelle is grown it is equilibrated for 200 times
the total number of degrees of freedom of accepted MC
moves to avoid sampling the initially biased configuration. A
simulation consists of 50 or 100 blocks, each block is the
configuration average of 100 samples, and 1000 MC updates
is performed between each sampling. Error bars are esti-
mated from the fluctuations of block averages.

Let rik be the position of thekth vertex on theith chain
relative to the core center. In the followingi, j denote chain
indices with a 1, . . . ,N range, andk,l denote vertex indices
with a 1, . . . ,n11 range. During a simulation, we sample
the average chain CM radiusRcm , and the square radius of
gyrationRg

2 of the individual chains. These are defined as:

Rcm5K 1

N (
i

uRcm,iuL with Rcm,i5
1

n11 (
k

rik ,

~14!

and

Rg
2
5K 1

~n11!N (
i

(
k

~Rcm,i2rik!2L . ~15!

We also sample the partial scattering contributions, cor-
responding to the chain self-correlationFc(q), the chain–
chain correlation functionScc(q), and the chain–core corre-
lation functionScs(q); these are, respectively, given by:

Fc~q !5K 1

~n11!2N
(

i
S (

k
e2iqrikD S (

l
e iqrilD L ,

~16!

Scc~q !5K 1

N~N21!~n11!2 (
i

S (
k

e2iqrikD
3S (

j5” i
(

l
e iqrj lD L , ~17!

and

Scs~q !5K ReS 1

~n11!N (
i

(
k

e iqrikD L . ~18!

A practical description of how these quantities are evalu-
ated during a simulation is presented in the Appendix. The
averages consist of both an orientational average, and a con-
formal average over nonoverlapping conformations. These
are performed by averaging the partial scattering contribu-

tions over 13 different directions for each configuration
sample. The partial scattering contributions are all normal-
ized to unity in theq→0 limit. Note that the core form factor
amplitude has been taken out of the chain–core scattering
contribution, which allows data obtained from the MC simu-
lation to be compared to the corresponding expressions in the
analytical models.

IV. RESULTS AND DISCUSSION

In order to describe the dependence of the various prop-
erties on surface coverage, we define a dimensionless mea-
sure of surface coverage as the ratio between the area of a
single chain, defined by the radius of gyrationR0 of a un-
perturbed semi-flexible chain with a finite number of steps24

and the surface area available per chain at a distanceRco

1R0 from the core center:

s5

NpR0
2

4p~Rco1R0!2
. ~19!

Our surface fraction is analogous to the dimensionless
c/c* concentration in semi-dilute solutions, wherec* is the
concentration at which the individual polymers begin to
overlap. At a surface coverage much less than one, chains are
separated and their conformation mainly influenced by core
expulsion and expansion due to excluded volume effects
within each chain. We expect that as the surface coverage
reaches unity, polymers begin to overlap and the interaction
between different chains becomes more pronounced. Curva-
ture is another effect which influences the properties of the
micellar corona. When chains are tethered to a flat surface,
they will approximately be uniformly stretched away from
the surface~the Alexander–de Gennes approximation! in or-
der to balance the elastic stretching energy and excluded vol-
ume interaction between monomers.12 However, chains teth-
ered to a sphere~or any convex surface! will gain a relatively
larger accessible volume at constant surface coverage, as
they stretch away from the surface with a large curvature
~i.e., small core!, compared to chains tethered to surface with
low curvature~i.e., large core!. We use the dimensionless
ratio h between the radius of gyration and the core radius as
a measure of curvature effects. When this ratio is small,
chains behave as they are tethered to a flat interface. If the
ratio is large, i.e., chains have a large radius of gyration
compared to core radius, the micelle becomes more like a
star polymer. These proposed measures of surface coverage
and curvature will fail, if chains are stretched away from the
core to such an extent that the chains can no longer be con-
sidered to be isotropic, i.e., when the chains form a brush, or
if the chains are so short that their radius of gyration and
contour lengths are comparable.

We have defined a reference micelle havingN544
chains, core radiusRco53.33b, and contour lengthL/b
58.32 corresponding ton550 bonds. We have performed
simulations, varying each of the three parameters in turn,
while keeping the remaining two parameters fixed at their
reference values. Eighteen simulations have been performed
with the number of chains ranging from 1 to 360, corre-
sponding to a surface coverage in the range from 0.01 to 4.9.
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16 simulations varying core radius in the range
1.24b – 22.11b, corresponding to a surface coverage from
0.02 to 2.4, and 11 simulations varying contour lengths in
the range 1.5b – 60.67b corresponding to a surface coverage
in the range from 0.1 to 2.6.

Simulation results for the total chain scattering are
shown in Figs. 1–3, for low (s'0.1), medium (s50.67)
and high (s'2.4) surface coverage. The medium results
correspond to the reference micelle, which is shown in all
figures as a common basis for comparison. The total chain
scattering from simulations carried out with core expulsion,
but without excluded volume interactions, is also shown on
the figures. These are termed noninteraction simulations in
the remainder of the paper. Scattering from these simulations
is independent of the number of chains, except for the

weighting between the inter- and intra-chain scattering con-
tributions to the total chain scattering. These simulation re-
sults are well described by both the analytical models from
Sec. II ~these fits are not shown in the figures!. Comparing
noninteracting simulations to simulations with interactions
allows us to identify features in the observed scattering
which are due to excluded volume effects.

A qualitative examination of the simulation results
shown in Fig. 1 reveals that the total chain scattering has a
very nontrivial dependence on the number of chains for
simulations with excluded volume interactions compared to
the noninteracting simulations. The general behavior ob-
served is one where the scattering intensity at highq values
drops, while oscillations become more pronounced, as we
increase the number of chains. This is a direct consequence
of weighting of intra-chain and the oscillatory contribution
from inter-chain correlations in Eq.~2!, and is clearly ob-
served on the noninteraction simulations. Simultaneously,
the excluded volume interactions causes the first minima to
grow progressively more narrow, while the higher order os-
cillations appear to be attenuated, when compared to the
noninteraction simulations. The noninteracting simulations
are well described by both models, and since the inter-chain
contribution in both models is always positive, the minima in
the total chain scattering correspond to the zero points of the
inter-chain contribution; thus the depth of the minima is de-
fined by the intra-chain contribution. The fact that the
minima of the simulations with excluded volume interactions
are below those of the simulations without interactions leads
us to conclude that the inter-chain contribution is negative at
the first minima, and at the higher order oscillations, since
the intra-chain contribution is only slightly affected by the
increase in the number of chains.

By examining the pair distance distribution correspond-
ing to the inter-chain correlationsScc(q) for: ~i! simulations
without core expulsion and excluded volume effects~not
shown, but described by model 1!; ~ii ! simulations with core
expulsion but without interactions between different chains;

FIG. 1. Total chain scattering functions when varying the number of chains.
The simulations withN56 ~circles!, N544 ~boxes!, and N5160 ~dia-
monds, shifted down half a decade! correspond to surface densitiess
50.09, 0.67, and 2.44, respectively. Curves are simulation results without
excluded volume interactions~full !, model 1 ~dash-dotted!, and model 2
~dashed! fits.

FIG. 2. Total chain scattering function when varying the core radius. For
simulations withRco59.89b ~circles, shifted down a decade!, Rco53.33b
~squares, shifted down half a decade!, and Rco51.24b ~diamonds! corre-
sponding to surface densitiess50.11, 0.67, and 2.43, respectively. Curves
are simulation results without excluded volume interactions~full !, model 1
~dash-dotted! and model 2~dashed! fits.

FIG. 3. Total chain scattering function when varying the chain length. The
simulations withL51b ~circles!, L58.32b ~squares!, andL560.67b ~dia-
monds! correspond to surface densitiess50.11, 0.67, and 2.59, respec-
tively. Curves are simulation results without excluded volume interactions
~full !, model 1~dash-dotted! and model 2~dashed! fits.
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and ~iii ! full interacting chains, we observe that the intra-
chain interaction introduces a correlation hole in the short
range part of the pair-distance distribution. At low surface
coverage, chain overlap is negligible, and effects of the hole
are absent from the observed scattering. However, as the
surface coverage increases, and chains begin to overlap, and
the shape of the correlation hole becomes clearly defined.
This is consistent with the correlation hole associated with
semi-dilute polymer solutions and polymer melts.25

Figure 1 shows an inward shift of the first secondary
peak as the number of chains increases, when comparing
simulations with and without excluded volume interactions.
This is consistent with the expectation that an increase in
chain interactions forces the chain CM away from the core.
A very slight decrease in scattering at highq values is ob-
served for the low surface coverage simulation, which is due
to the slight increase in the radius of gyration due to intra-
chain excluded volume interactions. The decrease of scatter-
ing at highq values for higher surface coverage is caused by
the negative inter-chain scattering contribution, which de-
cays slower than the noninteraction simulation results.

A qualitative pairwise comparison between Figs. 2 and 3
shows curves that appear to be identical except for a scale
factor. This is to be expected since the simulations shown in
the two figures have nearly identical surface coverage, cur-
vature measureh5Rg /Rco , and number of chains, and
these are the dimensionless quantities that describe the co-
rona. Thus we expect the two scattering contributions to fol-
low a scaling behavior of the form:

S~q !5 f s,h,N~qRg!. ~20!

The curves shown in Fig. 2 coincide at highq values,
where the intra-chain scattering contribution dominates. This
is to be expected, since the radius of gyration is only per-
turbed by the reduction of the core radius. However, the
reduction of the core radius moves the chains CM closer to
the core center, which corresponds to a shift of the oscilla-
tions toward largerq values as observed. In Fig. 3 the large
change in the radius of gyration associated with the increase
in the chain length is clear from the decrease of scattering in
the highq range. However, as the chains become longer, the
chain CM move away from the core, which corresponds to a
shift of the oscillations toward lowerq values, which is also
observed. In Fig. 3 we observe a clear difference in the decay
of the intra-chain contribution for the longest chains. The
decay is given by (qRg)21/n, wheren is the critical length
exponent, which isn50.5 for a random walk, andn
50.588 for a self-avoiding random walk.14 For simulations
with short chains this decay is not observed due to finite size
effects.

For the simulations shown in Figs. 2 and 3, the ampli-
tude of oscillations due to the inter-chain scattering contri-
bution is observed to decrease with increasing surface cov-
erage and decreasing core radius, i.e., for increased
curvature. For the noninteracting simulations, this is due to
the fact that intra-chain correlations dominate the inter-chain
correlations in theq range, where oscillations would be ob-
served, and as a result oscillations appear to be attenuated.
This is also true for the noninteracting simulations, however,

the intra-chain term is strongly affected by the effects of the
correlation hole due to the increased curvature and surface
coverage.

Figures 4–6 show the logarithm of the absolute value of
the chain–core scattering, a term that only depends on the
radial density distribution of chains. This term oscillates
around zero, and for each sign change the logarithm gives
rise to an inverted peak. A qualitative comparison between
the chain–core scattering shown in the figures reveals that
the frequency of the oscillations depends strongly on the
chain length and core radius, but they are only slightly per-
turbed by a variation in the number of chains. The noninter-
acting simulations are well represented by both models,
where the oscillatory behavior originates in the dependence
on the chain CM radius. This explains why increasing the
number of chains only slightly effects the oscillations, com-
pared to simulations where the core radius or radius of gy-

FIG. 4. Chain–core scattering when varying the number of chains for the
simulations shown in Fig. 1. The medium and high surface coverage curves
have been shifted down two and four decades, respectively. Curves are
simulation results without excluded volume interactions~full !, model 1
~dash-dotted! and model 2~dashed! fits.

FIG. 5. Chain–core scattering when varying the core radius for the simula-
tions shown in Fig. 2. The medium and high surface coverage curves have
been shifted down two and four decades, respectively. Curves are simulation
results without excluded volume interactions~full !, model 1~dash-dotted!
and model 2~dashed! fits.
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ration of the chains changes. In the latter cases the chains
CM moves closer or further away from the core, and this
corresponds to the observed shift of the oscillations toward
larger or smallerq values; whereas an increase in the number
of chains only perturbs the radius of gyration slightly and we
only observe a slight shift of the oscillations shown in Fig. 4.

We have fitted the model expressions forFct(q,Rg ,Rcm)
andScs(q,Rg ,Rcm) simultaneously to the corresponding data
obtained from the simulation. We have usedRg andRcm as
fit parameters and fixed the number of chainsN, and core
radius Rco at the values used in the simulation. The total
contour length is fixed atL5nl0 . The contour length along
with Rcm defines the weighting between the scattering from
the rod and chain sections for model 2 fits.

Figures 1–3 show model 1 and 2 fitted to the total chain
scattering for simulations with excluded volume interactions.
It is apparent that both models show systematic deviations at
high q values. At largeq values the intra-chain scattering
term Fc(q) dominates the total chain scatteringFct(q), and
both models use the Debye expression for the chain self-
correlation function. However, the simulated chains are
semi-flexible and have a finite number of bonds, and this
influences the self-correlation function at highq, where a
crossover to rigid rodlike scattering is expected. As a result
of this observation, we have limited the fit range toqb
,4.5, where the Debye expression works reasonably well.
Note that both models fit the noninteracting simulation data
in this range.

The fits are in very good agreement with the simulation
data for surface densitiess;0.1, but as the surface coverage
increases toward unity, the minima become deeper, and both
models fail to account for this since they fail to reproduce the
negative inter-chain scattering contribution due to the corre-
lation hole. However, both models are able to reproduce the
correct oscillatory behavior, and can account for the height
of the first oscillation. The difference between models 1 and
2 on the total chain scattering is marginal, and only shows up

as a slightly more accurate fit to the first oscillation for
model 2.

Model 1 and model 2 fits to the simulated the chain–core
scattering are shown in Figs. 4–6. For surface coverages less
than unity, the fits are in good agreement with the simulation
results except for some phase and amplitude deviations at
high q values. The amplitude deviations are caused by the
failure of the Gaussian chain form factor amplitude in repre-
senting the simulated chains, analogous to the situation for
the intra-chain scattering contribution. The addition of a rod
section to model 1 yielding model 2 has visibly improved
both amplitude and phase matching. The rod term has the
effect of shifting the zero points of the chain–core scattering
contribution of model 2 given by Eq.~11!, which explains
the improved phase and amplitude matching. For high sur-
face densities the second secondary peak in Fig. 4 is broad-
ened, while the first secondary peaks in Figs. 5 and 6 are
broadened. Neither model reproduces this broadening, which
we believe is due to the high monomer density close to the
surface.

When comparing values forRg and Rcm obtained from
simulations with those obtained from the fits, we need to
make some corrections for model 2. The two fit parameters
describe the Gaussian chain part of the chain, and not the rod
section. The rod section decreases the chain CM radius,
while it increases the radius of gyration. These corrections
can be calculated analytically, and are given by:

~Rcm!corr5Rcm2

l2

2L
, ~21!

and

~Rg
2!corr5Rg

2S 3
l~L2l !

L2
1

~L2l !2

L2 D
1l2S l2

12L2
1

l~L2l !

3L2 D . ~22!

The correction of the total CM radius is the weighted
average between the rod and chain CM, while the correction
to the radius of gyration was obtained by expanding Eq.~9!.
Note again thatl5Rcm2Rco is the length of the rod section,
which connects the core surface to the chain segment starting
a distanceRcm from the core, whileL is the total length of
the rod and chain section. In thel→0 limit the rod section
and associated corrections vanish, while in thel→L limit the
chain segment vanishes. In the limit where the chain section
vanishes,Rcm moves inward byL/2, which is the location of
the rod CM, and the radius of gyration correction reduces to
L2/12, which is the radius of gyration of a rigid rod of length
L.

Figures 7–9 show a comparison betweenRg and Rcm

obtained from the fits shown in Figs. 1–6 and the values
obtained directly from the simulation. All figures show the
onset of chain interactions effects ats;1. For the two simu-
lations where a minimal surface coverage limit is well de-
fined, i.e.,N51 andRco522b, both simulations show that
d5Rcm2Rco51.085Rg . The simulation results shown in
Fig. 9 display a qualitatively different behavior compared to

FIG. 6. Chain–core scattering when varying the chain length for the simu-
lations shown in Fig. 3. The medium and high surface coverage curves have
been shifted down one and two decades, respectively. Curves are simulation
results without excluded volume interactions~full !, model 1~dash-dotted!
and model 2~dashed! fits.

9667J. Chem. Phys., Vol. 112, No. 21, 1 June 2000 Scattering from block copolymer micelles



79

those shown in Figs. 7 and 8. In Fig. 9 the chain length
varies, which has a large impact on the radius of gyration,
while varying the number of chains or the core radius only
has an indirect effect on the radius of gyration, which ex-
pands slightly due to increased chain interactions.

A qualitative comparison of the estimate of the two
models ofRg and the simulation result shows that model 1
provides a better estimate for the radius of gyration over a
large range of surface densities, except for the simulations
with long chains, where there is no discernible difference
between the two models. We expect this to be caused by an
overestimation of the radius of gyration, when the rod sec-
tion is a significant percentage of the total chain length. Con-
versely, model 2 provides a better estimate of the chain CM
radius, which is due to the fact that the rod section improves
the representation of the radial density distribution caused by
core expulsion. One exception is the simulations varying the
number of chains, where both models consistently underes-
timateRcm2Rco ~model 1 by 20%, model 2 by 12%!, which
is due to the bad phase match in Fig. 4. Model 2 consistently
shows improved phase matching compared to model 1,

which explains why it provides a more accurate estimate of
Rcm . For the high surface coverages, the fits only agree with
the simulations results for lowq values. However, they still
provide estimates of the two fit parameters. This is because
the location of the first inverted peak of the chain–core scat-
tering provides an estimate ofRcm , while the lowq behavior
~of model 1!, Scs(q)'12(3Rg

2
1Rcm

2 )q2/6, contains infor-
mation onRg andRcm .

A quantitative comparison of the fit results shown in
Figs. 7–9, show that for surface coverages;0.1, the fits are
very good, and the value of the fit parameters are very close
to those obtained directly from the simulations. As the sur-
face coverage is increased tos;0.67~our reference micelle!
clear deviations become apparent in the total chain scatter-
ing. The deviation between simulation and fits forRg is 1%
for model 1, and 7% for model 2, while theRcm2Rco de-
viation is 19%, and 12%, respectively. This translates into a
deviation forRcm of 5%, and 3%, respectively. For a sur-
face coverage ofs;2.4, the models only reproduce the
simulation data in for lowq values, but they still provide
reasonable estimates for the radius of gyration and chain CM
radius. For the simulation varying the number of chains
@s(N)52.44# the deviations forRg is 5%, and 13% for
model 1 and 2, respectively. The deviations forRcm is 6%
and 4%. The deviations forRcm2Rco is a about factor of 3
larger. For the simulation varying the core radius@s(Rco)
52.43# the Rg deviations are less than 10%, however, the
deviations forRcm is 20%, and 11% for the two models,
respectively. The deviations forRcm2Rco are a about factor
of 2 larger. For the simulation varying the chain length
@s(n)52.59#, both Rg deviations are 6%, while the devia-
tions for Rcm are 21%, and 15%, respectively. The devia-
tions for Rcm2Rco are 1.5 times larger.

As already mentioned, we have also fitted the models to
the simulations without excluded volume interactions, and
both models produce good fits as expected. Model 2 yields a
somewhat better fit to the simulations, and provides an im-
proved estimate of the chains CM radius, when these are
compared to the simulation results. Conversely, model 1 pro-
vides a slightly better estimate of the radius of gyration. This
behavior is consistent with the results for simulations with

FIG. 7. Plot of radius of gyration~bottom curve against the left axis! and the
chain CM radius~top curve against the right axis! when varying the number
of chains. Symbols: Radius of gyration from simulation~circles and full
curve!, chain CM radius from simulation~box and full curve!, model 1 fit
~cross!, and model 2 fit~plus!.

FIG. 8. Plot of radius of gyration and chain CM radius for simulations when
varying the core radius. Symbols as in Fig. 7.

FIG. 9. Plot of the radius of gyration and chain CM radius for simulations
when varying the chain length. Symbols as in Fig. 7.
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excluded volume interactions. These fits are not shown in the
figures.

V. SUMMARY

We have performed Monte Carlo simulations of a model
of spherical block-copolymer micelles, simulations have
been performed with and without excluded volume interac-
tions, in order to qualitatively probe the effects of excluded
volume interactions on the micellar scattering function. We
conclude, that the observed effects can be attributed to a
correlation hole introduced by the excluded volume interac-
tions, which strongly affects the inter-chain and chain–core
contributions to the micellar scattering for micelles with high
surface coverage.

Furthermore we have analyzed the simulation data in the
context of the model of Pedersen and Gerstenberg and an
improved model, where chains are connected to the micelle
surface by a radially pointing rigid rod, which is a crude
model for the chain stretching close to the core surface. Both
models take explicit account of chain correlations due to
single chain connectivity, but neglect excluded volume ef-
fects. Both models approximate the effects of core expulsion
by lifting the polymer corona CM away from the core sur-
face. We have fitted the models simultaneously to the two
scattering contributions; the total chain scattering function
and chain–core scattering contributions as obtained directly
from the Monte Carlo simulations. The fits were performed
with only two free parameters, i.e., the chain radius of gyra-
tion and the chain CM radius. Both models provide very
good fits to simulations with core expulsion but without ex-
cluded volume interactions.

To avoid complications due to the semi-flexible chains
we have simulated, the fit range was restricted toqb,4.5.
This restriction could be removed by applying a more accu-
rate model for the chain form factor and form factor ampli-
tude~7 and 8! for instance a model derived from the Daniels
distribution.26 However, a chain form factor and form factor
amplitude based on the Daniels approximation are not valid
for our reference micelle, since it has only eight statistical
independent segments. Another possibility is an empiric ex-
pression for semi-flexible chains.21 The longest chains simu-
lated shows the decay expected for excluded volume chains,
and these require a chain form factor that can account for
excluded volume effects.14 We are currently working on de-
riving an empiric expression for the form factor and form
factor amplitude of a semi-flexible excluded volume chain
with a finite number of bonds, using Monte Carlo techniques.

For simulations with surface coverage less than unity,
fits of model 1 and 2 to the simulation provide accurate
estimates of the radius of gyration and the chain CM radius
compared to those obtained directly from the simulation. The
fitted parameters show systematic deviations due to excluded
volume interactions for surface coverages above unity. How-
ever, the fits still provide reasonable estimates of the two
parameters. Model 2, which attempts to include effects due
to chain stretching close to the core, has improved the model
estimate of the chain CM radius; however, it has had a det-
rimental effect on the radius of gyration estimate. We at-
tribute this deviation to the fact that the addition of a rigid

rod section overestimates the radius of gyration from the
stretched chains, when the rod section is a relatively large
percentage of the total chain length. However, the rod sec-
tion modifies the model such that it provides a more realistic
representation of the radial density distribution, and thus pro-
vides a more accurate chain CM radius estimate.

In the present paper we have used Monte Carlo simula-
tions to analyze the effects of excluded volume interactions
on spherical block copolymer micelles, and we have evalu-
ated two models that describe these objects. Generally, mod-
els are necessary to extract data from scattering experiments,
which do not allow for direct inversion of the experimental
results in terms of physical structures and their associated
parameters. Analysis and interpretation of experimental re-
sults require a large toolkit of different models. But the qual-
ity of the interpretation can only be as good as the quality of
the model in representing a physically realistic structure. To
evaluate the quality of a particular model, well-defined test
cases need to be examined; for this Monte Carlo simulations
are very well suited.

APPENDIX: CALCULATION OF PARTIAL
SCATTERING FUNCTIONS

To resume:rik denotes the position of thekth vertex on
the ith chain relative to the core center~ranges of indices as
defined previously!.

Let the phase sum of theith chain be z i(q)
5(k exp(2irikq); then the phase sum of the entire polymer
corona is given byw(q)5( iz i(q). The chain self-scattering
function, chain–chain and chain–core interference contribu-
tions are then given by:

~n11!2N Fc~qn!5K (
i

z i* z iL , ~A1!

~n11!2N~N21! Scc~qn!5K w* w2(
i

z i* z iL , ~A2!

~n11!N Scs~qn!5^Re~w !&. ~A3!

Here w* denotes complex conjugation ofw. The aver-
ages are taken over the allowed chain conformations~an MC
average! and micelle orientations. For each MC sample the
scattering functions are sampled for a number of directions,
M, of theq vector. The resulting partial scattering functions
depend only on the magnitude of the scattering vectorqn .
Let Nq be the number ofqn values sampled per MC sample.

Each time an MC sample is made,MNqN(n11) com-
plex exponentials~i.e., two trigonometric functions! have to
be evaluated, which should be compared to theN2(n11)2

evaluations that a direct space sampling method would re-
quire to calculate the pair-distance distribution. Reciprocal
space sampling is clearly a vast improvement, since we are
free to chose bothM andNq . However, this is still by far the
most dominant contribution to the total execution time of a
simulation, and a trick is clearly needed to calculate the com-
plex exponentials in an efficient manner. An obvious choice
would be a FFT technique;27 however, FFT require that the
qn’s are positioned on a lattice, and the number of points
required to cover the range fromqmin to qmax is Nq
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5qmax/qmin , even though the cost of evaluating each of the
exponentials is low, a huge number of points is required to
cover 3–4 decades. We have chosen a hybrid approach to
calculating the complex exponentials directly, using symme-
try properties to derive them, while keeping theqn’s approxi-
mately equidistant on a logarithmic scale.

Let us abbreviateaqn5rik•(qnq̂) whereq̂ is a unit vec-
tor. In the following we will concentrate on calculating
exp(2iaqn) in the case where exp(2iaqm) has already been
calculated for allm,n. If qm exists such thatqn52qm , then
exp(2iaqn)5exp(2iaqm)2 ~the double angle formulas!, since
we have previously evaluated exp(2iaqm), we only need to
square that number. Ifqm ,qp exists such thatqn5qm1qp

then exp(2iaqn)5exp(2iaqm)exp(2iaqp) ~the addition for-
mulas!, since both exponentials have previously been evalu-
ated, we only need to calculate the product of two numbers.
Thus by an advantageous choice of theqn distribution, we
can use symmetry properties to convert many trigonometric
evaluations into simple products of known complex num-
bers. The higher order symmetry properties require more al-
gebraic operations, and do not provide a significant optimi-
zation.

Let the target distribution be given by

qn
0
510(log qmax2 log qmin) ~n/Nq! 1 log qmin, ~A4!

which is an equidistant distribution, withNq points covering
the interval fromqmin to qmax on a logarithmic scale.

The actual distribution ofqn’s are chosen as to minimize

E@q1 , . . . ,qNq
#5kS Nq

ln~10!~ logqmax2 logqmin!
D 2

3(
i51

Nq ~q i2q i
0!2

~q i
0!2

~A5!

1bNcalc1gNadd1dNdouble, ~A6!

whereNcalc,Nadd, andNdouble is the number of exponentials
that require direct evaluation, or can be deduced using the
addition formulas, or formulas for the double angle, respec-
tively. Thus Nq[Ncalc1Nadd1Ndouble. The weightsb,g,
andd are chosen to represent the duration of the respective
numerical operation; we have usedb51 and g5d50.1.

The first term is a harmonic term that determines how large
deviations from a perfect logarithmic distribution should be
allowed, in order to speed up the evaluation; since the distri-
bution is on a logarithmic scale, we have to divide by the
local length scale, which is given by the parenthesis and the
denominator. The constantk should be chosen so small that
the orderingqm,qn when m,n is ensured, we have used
k50.01. This penalty functional is easily minimized by a
simulated annealing quench, with moves that shiftqn’s,
which require trigonometric evaluations intoqn’s, which can
be evaluated by simple algebraic operations on known num-
bers. If Nq is huge, care must be taken to avoid truncation
errors in the evaluation. In our implementation only about
10% of the complex exponentials need to be evaluated di-
rectly.
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k 
opolymer mi
elle 
oronas as quasitwo-dimensional dilute/semi-dilute polymersolutionsCarsten Svaneborg and Jan Skov Pedersen*Condensed Matter Physi
s and Chemistry Department, Risø national Labora-tory, DK-4000 Roskilde, Denmark*Present address: Department of Chemistry, University of Aarhus, Langelands-gade 140, DK-8000 Aarhus C, DenmarkChain-
hain intera
tions in a 
orona of polymers tethered to a spheri
al 
ore undergood solvent 
onditions are studied using Monte Carlo simulations. The total s
atter-ing fun
tion of the 
orona as well as di�erent partial 
ontributions are sampled. By
ombining the di�erent 
ontributions in a self-
onsistent approa
h it is demonstratedthat the 
orona 
an be regarded as a quasi two-dimensional polymer solution, with a
on
entration dependen
e analogous to that of an ordinary polymer solution. S
atter-ing due to the 
orona pro�le and density �u
tuation 
orrelations are separated in thisapproa
h. The osmoti
 
ompressibility is extra
ted from the latter, and it is shown tobe a universal fun
tion of surfa
e 
overage, with some deviations at high 
overage dueto surfa
e 
urvature e�e
ts.This paper has been a

epted by Physi
al Review E as an RapidCommuni
ation.



85Polymers 
an be tethered to a surfa
e, thus forming a di�use layer on thesurfa
e [1, 2℄. The equilibrium properties of su
h a layer follow from the balan
ebetween entropi
 for
es and ex
luded volume intera
tions. The latter favor astate with a minimum of monomer-monomer 
onta
ts, whi
h 
an be a
hievedby in
reasing the available volume per 
hain by in
reasing the layer thi
kness.Entropi
 for
es will tend to maximize the number of available 
hain 
on�gura-tions by opposing the 
hain stret
hing and by shifting the 
orona away from thesurfa
e to some extent. At low surfa
e 
overage the surfa
e intera
tion will dom-inate, and the polymers will have a mushroom like shape. At very high surfa
e
overage ex
luded volume intera
tions and 
hain-
hain intera
tions dominateand 
hains will be strongly stret
hed forming a polymeri
 brush [3, 4℄. Betweenthe mushroom and brush regime there is a broad region of intermediate sur-fa
e 
overages [5℄, whi
h is the typi
al regime a

essible by experiments, see e.g.[6, 7℄.In the present work we study the s
attering from the polymeri
 layer of aspheri
al parti
le su
h as the polymer 
orona of a diblo
k 
opolymer mi
elle.We use Monte Carlo (MC) simulation-generated data to show that a model inwhi
h the the 
orona is regarded as a two-dimentional solution is appli
able.The total 
orona s
attering 
an be de
omposed in two ways. In the analyti
almodel of Pedersen and Gerstenberg [8℄, the intra-
hain and inter-
hain s
at-tering 
ontributions are 
ombined to give the 
orona s
attering, however, thesame result 
an be obtained by 
ombining the s
attering 
ontribution due tothe average 
orona pro�le and density �u
tuation 
orrelations [9℄. The latter de-
omposition 
an be interpreteted as being the s
attering expe
ted from a thinlayer of dilute/semi-dilute solution 
on�ned to a thin layer around the 
ore [10℄.The approa
h presented in the present paper is based on self-
onsistent analysisof the MC results using the expressions provided by these two de
ompositions.The total 
orona s
attering as well as the intra-
hain, inter-
hain, and 
oronapro�le s
attering 
ontributions were sampled during the simulations. The ef-fe
ts of ex
luded volume intera
tions, 
ore expulsion, and 
hain semi-�exibilityon the s
attering was simulated and series of simulations varying the number of
hains, 
hain length, and 
ore radius were performed. In the analysis of the twoexpressions a Random Phase Approximation (RPA) was used for the �u
tuations
attering 
ontribution, and ex
ellent agreement was obtained when insertingthe partial s
attering 
ontributions as obtained from MC simulations. The ex-
ellent agreement of the two expressions enables us to extra
t the s
attering
ontribution due to density �u
tuation 
orrelations within the 
orona. These
arry thermodynami
 information about the apparent se
ond virial 
oe�
ientand the osmoti
 
ompressibility of the polymer layer. These quantities showa surfa
e 
overage dependen
e analogous to that expe
ted from an ordinarypolymer solution.Numerous approa
hes su
h as self-
onsistent �eld theory [27, 28℄, variationalte
hniques [29℄, and numeri
al simulations [13, 14℄ have all been applied forinvestigating the pro�les of brushes on 
urved interfa
es. Polymer layers at lowand medium surfa
e 
overages are not amenable to analyti
ally treatment, dueto the presen
e of large density �u
tuations. However, the small-angle s
atteringfrom a polymeri
 interfa
e depends not only on the pro�le but also on the
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orrelations of density �u
tuations [9℄. The s
attering from a dilute or semi-dilute solution of star polymers were treated by Marques et al. using an empiri
al`blob' approa
h [16℄. Our approa
h o�ers a 
lear quantitative pi
ture of theintera
tion e�e
ts in mi
ellar 
oronas, whi
h are based �rmly on Monte Carlosimulation results.We des
ribe the density of 
hains in a polymer 
orona on the surfa
e of aspheri
al parti
le using a redu
ed surfa
e 
overage. Due to the 
hain entropy,the 
enter of mass of a 
hain will be lo
ated at approximately a distan
e Rgfrom the 
ore surfa
e, where Rg is the unperturbed 
hain radius of gyration.The e�e
tive 
ore surfa
e area is thus 4�(R
o + Rg)2, where R
o is the 
oreradius, whereas the 
ross-se
tional area of N 
hains is �R2gN . The redu
edsurfa
e 
overage is given by the ratio of 
ross-se
tional 
hain area to availablesurfa
e area as � = N�R2g=[4�(R
o + Rg)2℄. The redu
ed surfa
e 
overage is atwo-dimensional analogy of the 
=
� 
on
entration [20, 25℄ for ordinary polymersolutions. A surfa
e 
overage of unity 
orresponds to 
riti
al overlap, where thearea o

upied by an unperturbed 
hain equals the available surfa
e area per
hain. For � < 1 
hains are few and far apart and weakly perturbed by thepresen
e of other 
hains, and the s
attering is well des
ribed by the model ofPedersen and Gerstenberg [8℄. However, in the brush regime (� � 1) the surfa
ewill indu
e 
hain ordering perpendi
ular to the surfa
e as 
hains are stret
hed.The s
attering in this regime is expe
ted to be des
ribed by a 
ore-shell model[19℄. Experimentally � < 5 is found for 
opolymer mi
elles [20, 16, 17℄.The normalized 
orona s
attering [F
or(q = 0) = 1℄ 
onsists of two weighted
ontributions: an intra-
hain 
ontribution F
 and an inter-
hain 
ontributionS

 as F
or(q) = 1N F
(q) + �1� 1N �S

(q): (8.1)Here q is the magnitude of the s
attering ve
tor, and F
 is the Fourier trans-form of the pair-distan
e distribution between sites on the same 
hain. Theintra-
hain s
attering is mainly due to 
hain 
onne
tivity and self-avoidan
e,and single-
hain properties su
h as the radius of gyration, the 
ontour length L,and the Kuhn length b 
an be determined from it. For a long semi-�exible 
hainthe Kuhn length is the step length of an equivalent random walk. The inter-
hains
attering S

 is the Fourier transform of the pair-distan
e distribution betweensites on di�erent 
hains. The inter-
hain s
attering 
ontains information aboutthe 
orona pro�le, and the radius of the 
ore. However, it also in
ludes 
orre-lations due to 
hain-
hain intera
tions su
h as the `
orrelation hole', whi
h isknown to be present in ordinary polymer solutions [20, 25℄.Core-shell models [19℄ des
ribe the 
orona s
attering in terms of the 
on�g-urationally averaged pro�le, and as a result all density �u
tuation 
orrelationsdue to 
hain 
onne
tivity, self-avoidan
e, and 
hain-
hain intera
tions are ne-gle
ted. The 
ore-shell approximation is F
or = A2
or, where the pro�le s
atteringis given by A
or(q) = R10 f(r) sin(qr)=(qr)4�r2dr, and where f(r) is the 
oronapro�le. If 
hain-
hain intera
tions are negligible, di�erent 
hains will be un
or-related, and the inter-
hain s
attering will be given by S

 = A2
or. Chain-
hainintera
tions will yield an additional 
ontribution to the inter-
hain s
attering



87due to short-ranged density �u
tuation 
orrelations, whi
h will dominate theinter-
hain s
attering at high q values. These �u
tuations are 
aused by the re-pulsive ex
luded volume intera
tions between di�erent 
hains. Based on this wede�ne an �u
tuation s
attering 
ontribution Fflu
, leaving only 
orrelations dueto the average pro�le (given by A2
or). Thus the 
orona s
attering is rewrittenas Fsol(q) = 1N Fflu
(q) + �1� Fflu
(q = 0)N �A2
or(q): (8.2)The weighting ensures that Fsol is normalized for q = 0 sin
e Fflu
 is notnormalized. Rewriting (1) as (2) has the e�e
t of shifting the in�uen
e of the
orrelation hole from S

 into Fflu
. Therefore, inter-
hain 
orrelations has to bein
luded in an expression for the Fflu
(q) term. We apply an expression basedon the PRISM theory for polymer solutions and melts, see e.g. [23℄:Fflu
(q) = F
(q)1� �
(q)F
(q) : (8.3)Here 
(q) is the Fourier transform of the dire
t 
orrelation fun
tion betweensites on di�erent 
hains in an equivalent site approximation, whi
h dependson the site-site intera
tion potential, and � is the density of s
attering sites.The Fsol expression has the interpretation as being the s
attering of a dilute orsemi-dilute solution with a pro�le f(r), and will be 
alled solution s
attering.We use Monte Carlo (MC) simulation results for 
omparing F
or and Fsol.The mi
elle was modelled as a number of semi-�exible 
hains tethered to aspheri
al 
ore. Intera
tions were in
luded by pla
ing six hard spheres of radius0:1b per Kuhn length b of the 
hains as this reprodu
es the ex
luded volumee�e
ts found experimentally for polystyrene in a good solvent [24℄. Chains wereex
luded from the 
ore region. The MC moves 
onsisted of pivoting the 
haintails [25℄, and two moves, that moved and reorientated 
hains on the 
ore sur-fa
e. We note that 
hains are not free to move about on the surfa
e of a mi
ellewith a glassy or 
rystalline 
ore. However, the observed s
attering is an ensem-ble average of all allowed 
orona 
on�gurations, and this in
ludes an averageover the lo
ation of the 
hain tethering points, whi
h requires a surfa
e move.The 
on�gurational ensemble averages of the F
, S

, and A
or s
attering 
on-tributions were simultaneously sampled during the MC simulations [26℄. Theunperturbed 
hain radius of gyration was obtained from a separate set of simu-lations of a single 
hain. We 
hose a referen
e mi
elle de�ned as having N = 44
hains, 
hain length L = 8:33b, and 
ore radius R
o = 3:33b, this 
hoi
e mimi
s aPluroni
 P85 mi
elle [8℄. We performed three series of simulations, where one ofthe three parameters was varied in turn, while keeping the remaining two �xedat their referen
e values. The range of variation was 
hosen to 
orrespond to avariation of surfa
e 
overage � in the range from 0.01 to about �ve, thus 
over-ing the experimental regime ranging from isolated 
hains to a reasonable 
hainoverlap. It should be noted that the equilibrium 
orona 
on�guration does notonly depend on the redu
ed surfa
e 
overage but also on the surfa
e 
urvatureRg=R
o and number of 
hains N .



88 CHAPTER 8. ARTICLE IIComparing (8.1), (8.2), and (8.3) for the sampled s
attering 
ontributionsallows us to obtain the ��
(q) term from the simulation results. We found that ithas a weak dependen
e on q, and as a result we approximate it with an e�e
tiveex
luded volume parameter �(�) � ��
(q). This 
onverts the PRISM expression(8.3) into the form of a Random Phase Approximation. The ex
luded volumeparameter is related to a virial expansion of the redu
ed osmoti
 
ompressibilityas �(�) = 2A2�+ 3A3�2 + : : : = 2A2(�)� where A2(�) is the redu
ed apparentse
ond virial 
oe�
ient [28℄. A
or os
illates around zero, and we have determined�(�) from the �rst zero point of A
or.The sampled 
orona s
attering from simulations varying the number of
hains is shown in �g. 1 normalized su
h that they 
oin
ide for large q values.The huge in
rease in os
illations as the number of 
hains in
reases is 
ausedby the 
hange in weighting between the highly os
illatory inter-
hain 
ontribu-tion, and the non-os
illatory intra-
hain 
ontribution. Also shown in �g. ?? isthe solution s
attering. The two sets of 
urves show an ex
ellent mat
h, whi
hdemonstrates the self-
onsisten
y of our model of the 
orona s
attering. Simi-lar ex
ellent agreement is obtained for simulations varying length of 
hains and
ore radius (not shown). Finally, the �u
tuation s
attering 
ontribution Fflu
 isshown. This 
ontribution is seen to de
rease with in
reasing surfa
e 
overage,analogous to the 
on
entration dependen
e of the s
attering from a polymersolution, see e.g. [28℄. The 
orona s
attering is dominated by pro�le s
atteringat low q values, whereas the �u
tuation s
attering dominates at large q values.A �u
tuation-dissipation theorem relates the Fourier transform of the den-sity �u
tuation 
orrelation fun
tion to the osmoti
 
ompressibility [20℄. Theredu
ed osmoti
 
ompressibility is given by � � ����� = Fflu
(q = 0)�1 =1 + 2A2(�)� where the redu
ed osmoti
 pressure is �� = �R2g�=(kbT ). In thisexpression �,kb, and T are the osmoti
 
ompressibility, Boltzmann 
onstant,and temperature, respe
tively. Fig. 2 shows the redu
ed osmoti
 
ompressibil-ity obtained from simulations varying number of 
hains, 
hain length, and 
oreradius, and the points fall on an universal 
urve as fun
tion of surfa
e 
over-age. Similar behaviour have been predi
ted for polymers at �at interfa
es byCarignano and Szleifer for �� [5℄ for � < 6. The osmoti
 
ompressibility showsa weak dependen
e of surfa
e 
overage for � < 1, as one would expe
t fromthe dilute polymer solution analogy, see e.g. [25℄. The insert of �g. 2 shows theapparent se
ond virial 
oe�
ient. The values from the three series of simula-tions approximately 
ollapse onto a 
ommon power law relation: A2(�)� = ���with � = 0:68 � 0:01 and � = 0:95 � 0:02. PRISM theory in the thread limit[23℄ predi
ts that A2(
=
�) is a 
onstant for low 
on
entrations. We observe aweak dependen
e on surfa
e 
overage in the range of surfa
e 
overages we havesimulated. At high surfa
e 
overages the deviations from power law behaviourobserved in the insert of �g. 2 is re�e
ted in the 
ompressibility. We attributethese deviations to e�e
ts of 
hain stret
hing, whi
h shows some dependen
e onthe surfa
e 
urvature.In this paper we have demonstrated that the s
attering from a 
orona of
hains tethered to a spheri
al 
ore for experimentally relevant surfa
e 
overages
an be self-
onsistently re-expressed as the s
attering one would expe
t froma quasi two-dimensional dilute/semi-dilute polymer solution 
on�ned to a thin



89layer on the 
ore surfa
e. We note that the radius of gyration as well as the
orrelation length are 
omparable to the 
orona thi
kness, whi
h is why thepolymer layer 
an be regarded as being quasi two-dimensional. In the brush limitthe 
hains will be aligned perpendi
ular to the surfa
e. This is 
learly far fromthe 
ase of a semi-dilute solution, and we expe
t the RPA expression to breakdown in this limit. It should be noted that we do not observe any deviationsbetween the 
orona s
attering and the solution s
attering even for the largestsurfa
e 
overages simulated. The expression we have proposed for the solutions
attering bridges the gap between the model of Pedersen and Gerstenberg, validat low surfa
e 
overage, and the 
ore-shell models expe
ted to be valid at veryhigh surfa
e 
overage, while retaining formal similarities with both models.We have also demonstrated that the s
attering 
ontributions due to the
orona pro�le and �u
tuations de
ouple, allowing us to dedu
e the osmoti

ompressibility of the 
orona from the density �u
tuation 
orrelation fun
tion.The 
ompressibility shows a universal dependen
e on surfa
e 
overage analogousto that observed for ordinary polymer solutions as fun
tion of 
on
entration.We furthermore expe
t similar expressions to be valid for the s
attering frommi
elles with ellipti
al and 
ylindri
al 
ores, however, with some deviations dueto the variation of the lo
al surfa
e 
urvature for su
h geometri
al shapes. Themodel, we have presented, 
an be used for separating 
orona pro�le and 
hain-
hain 
orrelation information in real experiments, and thus allows more detailedinformation to be gained by analysis of experimental data.
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Figure 1: Comparison between 
orona s
attering F
or and solution pro�les
attering Fsol:prof for mi
elles with number of 
hains: N = 3; 8; 22; 44; 87; 131(bottom to top). F
or (thi
k line), Fsol:prof (full boxes), and the �u
tuations
attering Fflu
 (thin dashed line). These are normalised su
h that the single
hain s
attering 
oin
ides in the large q limit.
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Figure 2: The redu
ed osmoti
 
ompressibility � plotted against surfa
e 
ov-erage for simulations varying number of 
hains (
ir
le), varying 
hain length(box), and varying 
ore radius (diamond). The insert shows the A2(�)� plot-ted against surfa
e 
overage. The line in the insert is the power law A2(�)� =0:675�0:95 and the 
orresponding osmoti
 
ompressibility is shown as a line inthe �gure.
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96 CHAPTER 9. ARTICLE IIIForm fa
tors of blo
k 
opolymer mi
elles withex
luded volume intera
tions of the 
orona 
hainsdetermined by Monte Carlo simulationsCarsten Svaneborg and Jan Skov Pedersen*Condensed Matter Physi
s and Chemistry Department, Risø national Labora-tory, DK-4000 Roskilde, Denmark*Present address: Department of Chemistry, University of Aarhus, Langelands-gade 140, DK-8000 Aarhus C, DenmarkThe s
attering of a diblo
k-
opolymer mi
elle has been simulated using MonteCarlo te
hniques. The s
attering is analysed using a novel model, where the 
oronais represented as a dilute/semi-dilute polymer solution with a radial pro�le. This ap-proa
h de
ouples the s
attering due to intera
tion and 
onne
tivity indu
ed density�u
tuations and the average radial pro�le of the 
orona. Three di�erent pro�les havebeen used to �t the simulated 
orona s
attering: a box with a Gaussian tail, and twomaximum entropy (ME) pro�les; 
hain penetration into the 
ore region is not allowedfor any of the pro�les. Ex
ellent �ts are obtained, espe
ially for a ME pro�le withthree parameters. An ex
luded volume parameter and the 
orona 
ompressibility areobtained, and show a strong dependen
e on surfa
e 
overage. The derived expressionsfor the form fa
tor provides a new approa
h for analyzing experimental data obtainedby neutron or x-ray small-angle s
attering for blo
k 
opolymer mi
elles with signi�
antintra and inter-
hain ex
luded volume intera
tions intera
tions.This paper has been submitted to Ma
romole
ules.



9.1. INTRODUCTION 979.1 Introdu
tionWhen a diblo
k 
opolymer is dissolved in a solvent whi
h is good of one blo
kand bad for the other blo
k, mi
elles are spontaneously formed. These mi
elleshave a relatively dense 
ore of the insoluble blo
ks surrounded by a di�use 
orona
onsisting of the solvated blo
ks. The 
ore 
an have various geometri
 shapessu
h as spheri
al, ellipti
al, or 
ylindri
al, depending on solvent and the lengthof the polymer blo
ks [1℄. Su
h mi
elles provide a model system for studyingthe intera
tions between polymer 
hains tethered to a 
urved surfa
e [2℄[3℄.Mu
h work have been invested in understanding properties of su
h systems,as tethering polymers to a surfa
e provide a way of modifying the physi
al,
hemi
al, and biologi
al properties of surfa
es [4℄[5℄. There are numerous studiesin the literature of polymers tethered to a �at interfa
e forming a polymer layer,see e.g. [6℄[7℄[8℄[9℄. For 
hains tethered to a 
onvex surfa
es su
h as a spherethe available volume per 
hain segment will grow rapidly along the 
hain assegments moves away from the surfa
e, and this has a strong e�e
t on theproperties of the polymer layer. The pro�les of brushes on 
onvex surfa
e havebeen examined using variational minimisation of mean �eld theory [10℄, self-
onsistent �eld theory [11℄[12℄[2℄[3℄, and simulation te
hniques su
h as MonteCarlo and Mole
ular Dynami
s simulations [13℄[14℄.Under good solvent 
onditions a redu
ed surfa
e 
overage of a �at polymerlayer 
an be de�ned as � = �R2go=A0, where Rgo is the radius of gyration ofan unperturbed polymer 
hain, and A0 is the surfa
e area available per 
hain(the inverse grafting density). For � � 1 (the mushroom regime) all 
hains areessentially isolated. The polymer layer will be laterally inhomogeneous, and the
onformation of a single polymer 
hain depends only on self-intera
tions andthe presen
e of the surfa
e. The pro�le of a polymer layer has re
ently beeninvestigated by renormalization group 
al
ulation [15℄ in the low 
overage limit.For � � 1 (the brush regime) ea
h 
hain will intera
t with many neighbouring
hains, and 
hains will stret
h away from the surfa
e in an attempt to redu
e theex
luded volume energy 
ontribution by a redu
tion of the monomer density,whi
h is a
hieved by in
reasing the height of the polymer layer. However, 
hainstret
hing will be a

ompanied by a de
rease in the 
on�gurational entropy
aused by the redu
tion of the number of possible 
hain 
on�gurations. Theheight of the polymer layer is determined by the balan
e of these two e�e
ts.In the brush regime the layer will be laterally homogeneous, and the 
hainstret
hing will be uniform ex
ept at the outer edge of the layer, where there willbe some �u
tuations due to the in
reased degrees of freedom of the 
hain ends[10℄.For a spheri
al mi
ellar 
ore we de�ne spe
i�
ally the redu
ed surfa
e 
ov-erage as � = N�R2go4�(R
o +Rgo)2 : (9.1)Here Rgo is the unperturbed radius of gyration of the 
hains, while R
o isthe 
ore radius, and N is the number of 
hains. The redu
ed surfa
e 
overage isthe pa
king fra
tion of 
hains on the surfa
e, assuming that 
hains are spheri
al
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ts on the surfa
e of the 
ore. Due to the non-penetration of the 
hains intothe 
ore region the 
enter-of-mass of a 
hain is displa
ed a distan
e about Rgofrom the 
ore surfa
e yielding an e�e
tive surfa
e area per 
hain of 4�(R
o +Rgo)2=N , while the 
ross-se
tional area of a 
hains is �R2go.The topi
 of the present arti
le is to present results from 
omputer simula-tions for the s
attering from mi
elles as well as an analysis of the results by anovel semi-empiri
al model. The model is a generalization of 
ore-shell modelsthat takes the s
attering due to density �u
tuation 
orrelations into a

ount.The model allows the radial pro�le, 
hain radius of gyration, and the 
oronaosmoti
 
ompressibility to be obtained from mi
ellar s
attering data.We have performed simulations of the s
attering for surfa
e 
overages � < 5,whi
h 
orrespond to the region of surfa
e 
overages experimentally available for
opolymer mi
elles, see e.g. [2℄[16℄[17℄. The 
omputer simulations have beenperformed using semi-�exible 
hains with ex
luded volume intera
tions, where
hains are ex
luded from the spheri
al 
ore region. Monte Carlo simulationte
hniques (MC) allow us to sample the s
attering 
ontributions from the mi
ellejust as in a real experiment using 
ontrast variation te
hniques, but using a well-de�ned model for the s
attering obje
t, here a mi
elle. This allows us to testmodels for the s
attering from 
omplex obje
ts using simulation results, andit allows us to 
orrelate the observed s
attering to properties of the simulatedmodel system, whi
h will improve the interpretation of experimental s
atteringdata. The simulation results are analysed using a semi-empiri
al model, whi
h
ombines expressions for the s
attering from a 
ore-shell model with that ofa dilute/semi-dilute polymer solution; a similar model have been used by deGennes for des
ribing the dynami
s of brushes at �at interfa
es [18℄[19℄. Wehave used three radial pro�les for des
ribing the average radial pro�le, a boxwith a Gaussian tail, and two Maximum Entropy pro�les [20℄[21℄[22℄, whereknowledge of the two or three �rst momenta of the pro�le is assumed.The paper is organised as follows: In se
tion 2 we present a derivation ofthe model, se
tion 3 presents the Monte Carlo simulations, and the quantitiesthat are sampled during the MC simulations. In se
tion 4 our MC results arepresented and dis
ussed, while se
tion 5 
ontains our analysis and modelling ofthe data, and our 
on
lusions are summarised in se
tion 6.9.2 Analyti
al ModelsIn a dilute polymer solution polymers are well separated, and as a result the
onformation and position of di�erent polymer 
hains are un
orrelated. Thes
attering from the solution is given by the single 
hain form fa
tor, whi
h foran ideal �exible 
hain is given by FDebye(x) = 2[x � 1 + exp(�x)℄=x2 withx = (qRg)2, where Rg is the radius of gyration, and q the magnitude of thes
attering ve
tor [23℄. For qRg � 1 the form fa
tor follows a (qRg)�2 powerlaw; this is a re�e
tion of the < R2ij >/ ji�jj s
aling relation between the root-mean-square (RMS) distan
e between two sites on the 
hain and the 
ontourlength of the 
hain segments 
onne
ting the two sites. Topologi
ally the ideal
hain is a 
onne
ted string-like obje
t with a fra
tal dimension of two, while
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tual polymer 
hains are multi-fra
tals due to their �nite size and the semi-�exibility of the polymer ba
kbone.The redu
ed density for a polymer solution is de�ned as � = 4�R3go�=3(identi
al to the redu
ed overlap 
on
entration 
=
�, where 
� is the overlap
on
entration of a polymer solution), and � is the number density of 
hains. Ifthe redu
ed density is well below unity, the solution is dilute, and polymers arewell separated. If the redu
ed density is well above unity, the solution is in thesemi-dilute regime, where polymers are entangled, forming a transient networkof intermeshed 
hains [24℄[25℄. Using a dis
rete model with n sites per 
hain,the s
attering from a semi-dilute solution follows the predi
tions from PRISMtheory [26℄[27℄, whi
h states that it depends on the single 
hain s
attering anda dire
t inter-
hain 
orrelation fun
tion 
(q) asFPRISM (q) = FDebye(q)1� n�
(q)FDebye(q) : (9.2)Here we have negle
ted the e�e
ts of self-avoidan
e and we do thereforenot 
onsider the s
reening at higher 
on
entrations. Let us assume that thedi re
t 
orrelation fun
tion 
an be approximated by its low q limit, then �no
(q)
an be approximated by an e�e
tive 
on
entration dependent ex
luded volumeintera
tion parameter �(�)[27℄. This turns the PRISM expression into the formof a Random Phase Approximation (RPA) [28℄. De�ning the redu
ed surfa
e
ompressibility as � � ���=��, where the redu
ed osmoti
 pressure is �� =4�R3g�=(3kbT ) (�� = �R2g�=(kbT ) in the 
ase of a two-dimensional systemof tethered 
hains to a surfa
e). Here �; kb, and T are the osmoti
 pressure,Boltzmann 
onstant, and absolute temperature, respe
tively. The RPA ex
ludedvolume intera
tion parameter 
an be related to a virial expansion of the redu
edosmoti
 
ompressibility as � = 1+2A2�+3A3�2+ : : : = 1+2A2(�)� = 1+ �,where the A2(�) = A2 + 3A3�=2 + : : : fun
tion de�nes the apparent se
ondvirial 
oe�
ient [28℄. In the dilute limit the RPA expression redu
es to the formfa
tor of an ideal 
hain, while in the q ! 0 limit the inverse forward s
atteringis F�1RPA(q = 0) = 1 + � = � whi
h is expe
ted from a �u
tuation dissipationtheorem.A blo
k 
opolymer mi
elle 
onsists of a di�use 
orona of the dissolved blo
kand a dense 
ore of the insoluable blo
k. The normalised form fa
tor [Fmi
elle(q =0) = 1℄ of a blo
k 
opolymer mi
elle with a homogeneous spheri
al 
ore 
an bewritten in terms of partial s
attering 
ontributions asFmi
elle(q) = 1(�
or + �s)2 h�2s�2(q) + �2
orF
or(q) + 2�s�
orA
or(q)�(q)i ;(9.3)where the three 
ontributions 
orrespond to s
attering from the 
ore, the 
orona,and an interferen
e term between the 
ore and the 
orona, respe
tively. The
orona and 
ore ex
ess s
attering lengths are denoted �
 and �s, respe
tively,and they are de�ned as �
or = NV
or��
hain and �s = NVs��
ore, where V
or,Vs, ��
hain, and ��
ore are the volume of a 
orona and 
ore blo
k, the ex
esss
attering length densities of a 
orona blo
k, and 
ore blo
k, respe
tively. A
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k 
opolymer mi
elle has impli
itly been assumed, su
h that N denotes theaggregation number. In this paper the 
orona, 
ore and 
orona-
ore interferen
e
ontributions to the mi
elle s
attering are normalised to unity in the q ! 0limit. The normalised form fa
tor amplitude of a sphere is given by Rayleigh as�(qR
o) = 3[sin(qR
o)� qR
o 
os(qR
o)℄=(qR
o)3, where R
o is the radius of themi
elle 
ore [29℄.Be
ause the 
ore is assumed to be spheri
al and homogeneous, A
or onlydepends on the radial distribution of segments '(r), i.e. the 
orona pro�le, andA
or will in the rest of the paper be denoted pro�le s
attering. It is given byA
or(q) = Z 10 dr4�r2 sin(qr)qr '(r): (9.4)If the single 
hain s
attering 
ontribution is negle
ted as well as 
orrelationsdue to density �u
tuations 
aused by 
hain-
hain intera
tions, the 
orona s
at-tering is given by F
or = A2
or. This is the approximation that yields a 
ore-shellmodel of the mi
ellar s
attering[30℄, whi
h is the s
attering from a 
on�gura-tionally averaged mi
elle, rather than the 
on�gurationally averaged s
atteringfrom a mi
elle, whi
h is the s
attering observed experimentally. As single 
hains
attering is negle
ted, a 
ore-shell model is unable to reprodu
e the 
hara
ter-isti
 single 
hain power law de
ay at large q values, whi
h is a signature of the
hain 
onne
tivity, nor is a 
ore-shell model able to represent the �nite s
atter-ing observed in the minima where A
or(q) = 0. Only in the limit � � 1 wherethe density of 
hains is very high, e.g. when the 
orona is in the brush regime, dowe expe
t these �u
tuations to be su�
iently suppressed for 
ore-shell modelsto give a reasonable des
ription.For a mi
elle the 
orona s
attering is the sum of two 
ontributions: a 
on-tribution from the intra-
hain s
attering F (q) (proportional to the number of
hains N), and inter-
hain s
attering H(q) (proportional to the number of dif-ferent pairs of 
hains N(N � 1)). The normalised [F
or(q = 0) = 1℄ 
oronas
attering is thus given byF
or(q) = F (q)N + N � 1N H(q): (9.5)The separation of the 
orona s
attering into inter-
hain and intra-
hains
attering 
ontributions is somewhat arbitrary. Another way of separating the
orona s
attering is in terms of the s
attering from the 
on�gurationally aver-aged radial pro�le, and from the 
orrelations of the density �u
tuations [31℄[32℄about this average pro�le. The s
attering due to the radial pro�le is given byA2
or as in a 
ore-shell model. The density �u
tuation 
orrelation fun
tion de-pends on 
hain intera
tions and 
hain 
onne
tivity, and we model this by thes
attering from a two dimensional dilute/semi-dilute solution using the RPAapproximation:Fsol:prof (q) = FRPA(q)N + N � FRPA(q = 0)N A2
or(q): (9.6)Here the weighting of the two terms has been adjusted to a

ount for the fa
tthat s
attering have been shifted from the pro�le s
attering 
ontribution into the
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tuation s
attering 
ontribution, and the �u
tuation s
attering 
ontributionis not normalized. This expression for the 
orona s
attering has separated thetotal s
attering into a term that only depend on the s
attering from a single
hain and an ex
luded volume parameter, and a term that only depends onthe radial pro�le of the 
orona, and 
an be interpreted as being the s
atteringone would observed from a polymer solution with a parti
ular radial pro�lebeing 
on�ned to the mi
ellar surfa
e. The �rst term is denoted the �u
tuations
attering in the rest of this paper, while the se
ond term is denoted pro�les
attering.9.3 Monte Carlo SimulationWe have performed Monte Carlo (MC) simulations on blo
k 
opolymer mi
elles[33℄. Mi
elles was modeled as a spheri
al 
ore with a number N of semi-�exible
hains tethered to it, where ea
h 
hain 
onsists of n bonds of length l0. Thevalen
e angle between segments was �xed at 135:585 degrees, whi
h yielded aKuhn length b = 6l0 su
h that the semi-�exible 
hain reprodu
es the radiusof gyration of a �exible 
hain in the long 
hain limit. The ex
luded volumeintera
tion was simulated by pla
ing six hard spheres along ea
h Kuhn lengthof the 
hain. The radius of the hard spheres was �xed at 0:1b, whi
h is knownto reprodu
e the binary 
luster integral of polystyrene in a good solvent [35℄.The MC moves 
onsisted of pivoting the individual 
hains [36℄, and two surfa
eMC moves, that moved and reorientated 
hains on the mi
elle surfa
e. Thesewere performed by pivoting the entire 
hain about the 
ore 
enter or the tethervertex, respe
tively. Con�gurations where a 
hain was found to overlap withother 
hains or the 
ore region were reje
ted. We used the �zippering� algorithm[37℄ when 
he
king for 
hain overlap, taking into a

ount the semi-�exibilityof the 
hains, and taking 
are to avoid introdu
ing lo
al sti�ness by allowingneighbouring verti
es along the 
hain to overlap. The initial mi
elle 
on�gurationwas 
onstru
ted using slightly stret
hed 
hains, whi
h were grown while avoidingoverlaps. This initially biased 
on�guration was equilibrated by performing MCmoves until the number of a

epted moves was in ex
ess of one hundred timesthe number of degrees of freedom in the model. The three parameters 
ontrollingthe step size of the MC moves were adjusted during the equilibration stage toyield approximately 50% a

eptan
e probability for ea
h of the three moves.The 
hain was periodi
ally re
onstru
ted after every 50000 pivot moves us-ing the tabulated dihedral angles to avoid the build up of numeri
al errors dueto the many repeated rotations needed to sample the mi
ellar 
on�gurationsspa
e. This was made possible be
ause ea
h 
hain 
arries a virtual zeroth seg-ment around with it, and the zeroth segment and the �rst segment, de�ne a
oordinate system in whi
h it is easy to add another segment with a spe
i�
 di-hedral angle, valen
e angle, and segment length. This pro
edure, when iterated,uniquely re
onstru
ts the 
hain based on a table of dihedral angles, a table whi
hwas 
reated during 
hain formation, and whi
h was updated ea
h time a pivotmove was a

epted. This is a 
heap and e�e
tive operation 
ompared to solving3 linear equations for ea
h segment as in the 
hain 
orre
tion algorithm of Stell-



102 CHAPTER 9. ARTICLE IIIman and Gans [36℄, and also provides an easy way of 
reating the initial 
hain
on�guration. The deviation between the a
tual and expe
ted dihedral anglewas 
onstantly below 3� 10�12 during the simulation of the longest 
hain (229segments), with deviations in segment length and valan
e angle below about athird of that. During a MC simulation the 
on�guration was sampled for ev-ery 1000 attempted MC steps, and a simulation 
onsisted of 100 blo
ks, ea
hblo
k being the average of 100 samples. Error bars was derived by analysing the�u
tuations of the blo
k averages.During MC simulations the radial density pro�les '(Rj) were sampled ina number of bins at radii Rj as the number of verti
es lying in a spheri
alshell 
entered on the 
ore with outer radius (Rj + Rj+1)=2 and inner radius(Rj�1 +Rj)=2. Ea
h bin was normalised by the volume of that spheri
al shell.We sampled the radius of gyration of the individual 
hains de�ned asR2g = * 1(n+ 1)N NXi n+1Xk (R
m;i � rik)2+ with R
m;i = 1n+ 1 n+1Xk rik; (9.7)where rik is the position of the k'th vertex on the i'th 
hain. N is the number of
hains and n+1 is the number of verti
es/s
attering sites. The s
attering fromthe mi
elle 
orona is given by the s
attering from the set of verti
es and 
ore asFmi
elle(q) / *������
or NXi Ai + �s������2+ ; (9.8)where the form fa
tor amplitude of the i'th 
hain isAi(q) = 1N(n+ 1) n+1Xk eiq�rik : (9.9)Sin
e the mi
elle 
ore is assumed to be spheri
al and homogeneous, the 
oreform fa
tor amplitude � is real and 
an be moved outside the 
on�gurational andorientational average. The remaining 
on�gurational averages 
an be 
omparedto the 
orresponding terms in (9.3). The normalised 
orona s
attering and thepro�le s
attering 
an be identi�ed asF
or(q) = 1N2 *����� NXi Ai�����2+ ; (9.10)and A
or(q) = 1N *Re NXi Ai+ : (9.11)In this notation the single 
hain s
attering and inter-
hain s
attering 
an bewritten as the sum of diagonal and o�-diagonal members of (9.10) as:F (q) = 1N * NXi jAij2+ and H(q) = 1N(N � 1) * NXi6=j AiA�j+ : (9.12)



9.4. RESULTS AND DISCUSSION 103Comparing these equations to (9.10) demonstrates the weighting used in theexpression for 
orona s
attering (9.5). The averages 
onsist of a 
on�gurationalas well as a orientational average. These were performed using MC sampling, andby evaluation of the s
attering for 13 dire
tions for ea
h q value, and 
hoosing anew set of random dire
tions ea
h time a blo
k of 100 samples was 
ompleted.The set of q values were 
hosen as approximately logarithmi
 distributed, butslightly tweaked su
h that many q values are the sum of two smaller q values, ortwi
e another q value. This 
onverted many of the 
omplex exponentials neededto evaluate (9.9) into simple produ
ts and squares of previously 
al
ulated 
om-plex numbers. This method of sampling yields a signi�
ant optimisation of thesampling of mi
ellar s
attering [33℄.9.4 Results and Dis
ussionWe have 
hosen a referen
e mi
elle de�nes as having N = 44 
hains, 
hainlength L = 8:33b, and 
ore radius R
o = 3:33b, as this mimi
s the 
on�gurationof the Pluroi
 P85 mi
elles [106℄. We use the Kuhn length b as a length s
ale.We have performed three series of simulations where one of the parameters N;L, and R
o was varied while keeping the remaining two �xed at their referen
evalues. The range of variation was 
hosen to 
orrespond to a variation of surfa
e
overage in the range from 0:01 to �ve, 
overing the experimentally a

essibleregime for 
opolymer mi
elles [2℄[16℄[17℄.Figure 1 shows the 
orona s
attering for simulations where the number of
hains is varied. A qualitative examination shows a huge de
rease of s
atteringat high q values relative to the s
attering at low q values as the number of 
hainsis in
reased, while the amplitude of the �rst subsidiary os
illation in
reases andhigher-order os
illations progressively be
ome more pronoun
ed. This is 
ausedby the weighting between the highly os
illatory inter-
hain s
attering H(q), andthe non-os
illatory intra-
hain s
attering F (q). The s
attering is dominated bysingle 
hain s
attering and its 1=N dependen
e at high q values, while the rapidlyde
aying pro�le s
attering 
ontribution dominates at low q values. The minimaof the 
orona s
attering 
orrespond to q values where A
or(q) = 0, and in thoseminima the s
attering intensity is given solely by the 
hain s
attering F .Figure 2 shows the 
orona s
attering 
orresponding to simulations where the
ore radius is de
reased for �xed number of 
hains and 
ore radius. De
reasingthe 
ore radius, 
auses the os
illations due to the radial pro�le to shift towardslarger q values. Simultaneously the os
illations are redu
ed as the inter-
hains
attering be
omes progressively less dominant 
ompared to the 
hain s
atteringF (q), whi
h is essentially un
hanged by a de
rease in 
ore radius.The logarithm of the absolute value of the pro�le s
attering is shown in�gures 3 and 4. Ea
h sign 
hange gives rise to an inverted peak due to the log-arithm. A qualitative examination shows that in
reasing the number of 
hainshas only a slight e�e
t on the pro�le s
attering i.e. the 
orona pro�le, as the�rst inverted peaks are shifted slightly towards smaller q values indi
ating aslight in
rease of the 
orona width. As the 
ore radius is de
reased a huge shiftis seen in the shift of the os
illations towards larger q values shown in �gure
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h indi
ates that varying 
ore radius has a large impa
t on the 
oronapro�le. Simulations where the 
hain length is in
reased will display similar ef-fe
ts as those where the 
ore radius is de
reased, as this provides two oppositeme
hanisms of 
ontrolling the surfa
e 
urvature, whi
h 
an be quanti�ed by thedimensionless ratio of the radius of gyration to 
ore radius. A broadening ofthe �rst subsidiary and se
ond subsidiary os
illation is observed in �gure 3 and4, and this is attributed to e�e
ts of surfa
e 
overage and surfa
e 
urvature,respe
tively, on the shape of the 
orona pro�le.Figure 5 shows the redu
ed density pro�les sampled during the simulations,where the number of 
hains, or 
ore radius was varied. Simulations varying the
hain length yields the same redu
ed density pro�le as simulations varying the
ore radius, as these simultaneously varies the surfa
e 
overage and 
urvature ina similar manner. The redu
ed density pro�les are de�ned as '0(r0) = '(r0)=Cwhere C = R '(r0)dr0 is an area normalisation 
onstant, and the redu
ed radiusis de�ned as r0 = (r �R
o)=(hri �R
o), where hri = R r'(r) 4�r2dr is the �rstmoment of the simulated pro�le. This representation shows the 
hange of thepro�le shape rather than the 
hange of the pro�le itself.At low surfa
e 
overage all pro�les indi
ate a depletion zone 
lose to the
ore, however, no depletion zone is present when the surfa
e 
overage is in-
reased above unity. At su�
iently large surfa
e 
urvatures the '(r) / r�4=3s
aling behaviour predi
ted by Halperin [24℄ is 
learly observed in the vi
inityof the 
ore surfa
e, however, further away from the 
ore the radial pro�les de
ayfaster than predi
ted by Halperin, whi
h is due to the �nite length of the sim-ulated 
hains. Upon variation of the number of 
hains, the pro�le only showsa dependen
e on the number of 
hains for surfa
e 
overages above unity, indi-
ating that 
hain intera
tions are negligible for surfa
e 
overages below unity.The pro�le for simulations where the 
hain length is varied shows a large 
hangeof shape. This is due to the fa
t that the e�e
tive surfa
e 
urvature Rg=R
o issimultaneously in
reased.9.5 Analysis and modelling of the resultsFor a quantitative analysis of the simulated 
hain s
attering, two parametersare required for the 
hain s
attering, namely the radius of gyration Rg , andthe ex
luded volume parameter in the RPA expression, whi
h is assumed to bea fun
tion of the surfa
e 
overage �(�). We have assumed that the ex
ludedvolume 
oe�
ient only depends on the redu
ed surfa
e 
overage, in analogywith an ordinary polymer solution where it is a fun
tion of the redu
ed density� as shown in the theory se
tion. We have simulated semi-�exible 
hains, as thisprovides a relatively realisti
 model for real polymer 
hains. The simple RPAexpression is modi�ed using a Daniels form fa
tor in the denominator [55℄, whi
htakes the semi-�exibility of the 
hains into a

ount in an approximate manner,while we retain the Debye form fa
tor in the numerator of the RPA expression.Simulations have shown, that this provides a quite a

urate expression for thes
attering from semi-dilute solutions of semi-�exible polymers [40℄. The full
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tuation s
attering 
ontribution isFRPA(qRg) = FDaniels � q2R2ge(L=b)�1 + �(�)FDebye(q2R2g) ; (9.13)FDaniels(x) = FDebye(x) + b15L �4 + 7x�1 � (11 + 7x�1)e�x� ;FDebye(x) = 2[x� 1 + exp(�x)℄x2 ;and e(n) = 1� 32n + 32n2 � 34n3 �1� e�2n� :Here e(n) is a 
orre
tion to the radius of gyration of the Daniels expressiondue to the �nite number of statisti
ally independent segments in our simulations[41℄. The pro�le s
attering A
or is the Fourier transform of the radial pro�le, andrequires an expression for the radial monomer pro�le '(r). To our knowledge, notheoreti
al expressions exist for the radial density pro�les of spheri
al mi
ellesin the low to medium 
overage limit, whi
h we explore in the present paper.As a result we use three empiri
al pro�les, all of whi
h are generalisations of aGaussian distribution.The �rst pro�le we use is a box with a Gaussian tail, abbreviated BoxGausspro�le, whi
h is de�ned as follows'(r) = 8><>: 0 r < R
oB R
o � r < R
hB exp ��(r �R
h)2=(2s2)� R
h � r :Here B�1 = R '(r)4�r2dr is a normalisation 
onstant, R
h is the outer edgeof the box, and s de�nes the length s
ale on whi
h the Gaussian tail de
ays.The normalised s
attering from this pro�le is given by:A
or(q; s;R
h) = Sg(q; s;R
h) + V (R
h)�(qR
h)� V (R
o)�(qR
o)Vo + V (R
h)� V (R
o) : (9.14)Here �(qR) is the normalised form fa
tor amplitude for a homogeneoussphere with a volume V (R) = 4�R3=3. And the normalised s
attering 
ontribu-tion of the half-Gaussian isSg(q; s; r) = nqr �4rs+p2�(r2 + s2)�o�1�(2rs sin(qr) +p2� exp(�(qs)22 )�qrs2 
os(qr) + r2 sin(qr)�
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os(qr)� qrs2 sin(qr)�� ;while the 
orresponding volume of the Gaussian pro�le isVg(s; r) = 2�s �4rs+p2�(r2 + s2)�The Dawson integral is given by D[y℄ = exp(�y2) R y0 exp(t2)dt and a numer-i
al expression for this integral is given in Numeri
al Re
ipes [46℄. An expressionfor the s
attering from a Gaussian-shaped pro�le has previously been reportedby H. Bagger-Jörgensen et al. [42℄, however, the published expression 
ontainserrors.We also use two maximum entropy (ME) [20℄[21℄[22℄ pro�les for analysingthe data. These pro�les are based on the assumptions that no 
hains enter themi
ellar 
ore, su
h that '(r) = 0 for r < R
o. We furthermore assume knowledgeof the �rst two or three momenta of the pro�le. In general assuming knowledgeof the �rst m momenta of pro�le leads to an entropy fun
tionalS['℄ = Z 1R
o dr4�r2'(r) �K ln'(r) + mXn=0�nrn! ;where a uniform prior is assumed. Here �n is a set of Lagrange multipliers toensure them+1 
onstraints of the momenta of the distribution '(r). The zeroth
onstraint ensures normalisation. Upon variation of the entropy fun
tional it isseen that the maximum entropy pro�le 
an be written as'm(r; a1; : : : ; am) = ( 0 r < R
oB exp [�Pmn=1 an(r �R
o)n℄ r � R
o ;where B is a normalisation 
onstant, and the set of an's are related to theLagrange multipliers. We take these as �t parameters when �tting the s
attering.For m = 2 the normalised pro�le s
attering produ
ed by this pro�le, hen
edenoted the ME2 pro�le, 
an be worked out for a2 > 0. This yieldsA
or(q; a1; a2) =4a3=22 sin(qR
o) + 2a2p�Re �Erf
(x+ iy) exp(x2 � y2)(q + ib)ei
	p�(2a2 + b2)qErf
(x) exp(x2)� 2pa2 (a1 � 4a2R
o) q ; (9.15)where b = 2a2R
o�a1, 
 = 2xy�qR
o, x = a1=(2pa2), and y = q=(2pa2). Refzgis the real part of the 
omplex number z, and Erf
(z) is the 
omplementary errorfun
tion of 
omplex argument; an expression for Erf
(x+ iy) exp(x2�y2) is alsogiven in the appendix. In the limit of R
h ! R
o and a1 ! 0 both pro�les
onverges towards a simple Gaussian pro�le, and the two s
attering expressions(9.14) and (9.15) are identi
al.



9.5. ANALYSIS AND MODELLING OF THE RESULTS 107We have also used a ME pro�le with m = 3 denoted the ME3 pro�le.The pro�le s
attering was obtained by numeri
al Fourier transformation of thepro�le. The pro�le was represented by 500 pie
ewise linear segments in the rangefrom R
o to R
o + 6Rg, and an analyti
al expression for the Fourier transformwas used for the s
attering from ea
h segment.The 
orona and pro�le s
attering obtained from the MC simulations using(9.10) and (9.11) were �tted simultaneously by the 
orresponding theoreti
alexpressions (9.6) and (9.4), where we model the �u
tuation s
attering by (9.13),and we model the pro�le by one of the three pro�les: box with a Gaussian tail(abbreviated BoxGauss), and a maximum entropy pro�le assuming knowledge ofthe �rst two or three momenta (abbreviated ME2 and ME3). The �t parametersfor the �u
tuation s
attering are the radius of gyration Rg and the ex
ludedvolume 
oe�
ient �. The �t parameters for the radial pro�les are R
o and s forthe BoxGauss pro�le, while the �rst two or three an parameters are �tted forthe two ME pro�les. The �t range for the pro�le s
attering was qb < 10 andqb < 4 for the 
orona s
attering. The latter range is di
tated by the fa
t thatthe Daniels expression is not valid for larger values of qb, as it fails to reprodu
ethe rigid rod s
attering behaviour observed at large q values.The results of �tting the model using the three pro�les to the simulationresults for the 
orona s
attering and pro�le s
attering are shown in �gures 1-4.For � < 1 all the �ts have redu
ed 
hi-square value [43℄ �2red < 5, ex
ept for thesimulations with the shortest 
hains L = 2b and L = 4b whi
h have a �2red < 30.These large values are due to the fa
t that the Daniels distribution is not validfor 
hains with so few statisti
al segments. In the � < 1 range the ME2 andME3 pro�les are identi
al sin
e the a3 parameter is estimated to zero withinthe statisti
al errors for the ME3 pro�le. For simulations with very large 
oreradii both ME �ts 
onsistently have somewhat smaller �2red values 
omparedto the BoxGauss pro�le �ts, however, for simulations with a low aggregationnumber, all three pro�les provide �ts of similar quality. The agreement betweenmodel and simulation data is ex
ellent for surfa
e 
overage � < 1 for all threepro�les. However, for � > 1 the �ts provided by the ME2 pro�le are 
omparableto those using the BoxGauss pro�le, while the ME3 pro�le 
onsistently providessigni�
antly better �ts, where �2red is redu
ed by at least an order of magnitude.This vast improvement 
an be understood by observing the deviations shownin the high q part of 
orona s
attering shown in �gure 1 and 2 for the largestsurfa
e 
overage. These deviations are 
aused by the inability of the pro�le inrepresenting the a
tual pro�le s
attering, as shown in �gure 3 and 4, wherethe ME3 pro�le 
an be seen to give a mu
h better �t to the pro�le s
attering
ompared to the BoxGauss and ME2 pro�les.Pro�les obtained by �tting the s
attering and pro�les sampled during thesimulation are shown in �gure 5 and 6. They have been plotted using the s
al-ing transformation of the 
orresponding simulation pro�le to avoid introdu
ingartifa
ts when 
omparing the two s
aled pro�les. For low surfa
e 
overages the�tted pro�les are very similar, and show a good agreement with the simulatedpro�les. For high surfa
e 
overages the ME3 pro�le give signi�
antly better es-timates than the two other pro�les. These deviations at high surfa
e 
overagesare re�e
ted in the deviations in the pro�le s
attering shown in �gures 3-4. The



108 CHAPTER 9. ARTICLE IIIdeviations in the vi
inity of the 
ore do not appear to have any e�e
t on thepro�le s
attering.For � < 1 �tting the three pro�les yields identi
al estimates of the radiusof gyration and the ex
luded volume parameter, while for � > 1 signi�
antdeviations are observed between the estimates provided by �tting the threemodel expressions. These are 
aused by the inability of the BoxGauss and ME2pro�les in �tting the sampled pro�le s
attering and 
orona s
attering at highq values. Both the radius of gyration and the ex
luded volume parameter areestimated from the 
orona s
attering at high q values, and as a result of this weonly report the results obtained from the �ts using the ME3 pro�le.The radius of gyration obtained from the simulations is shown in �gure 7.For the simulations where the surfa
e 
overage is in
reased by in
reasing thenumber of 
hains or de
reasing the 
ore radius show a radius of gyration with asimilar dependen
e on surfa
e 
overage. Radius of gyration estimated by the �tsis also shown, and they are in good agreement with the simulations results withless than 2% deviation for simulations with a low number of 
hains or large 
oreradius. Larger deviations (12% for the highest surfa
e 
overage) are apparentfor simulations with long 
hains.The insert in Figure 8 shows the �(�) parameters obtained from �ts usingthe ME3 pro�le. While this parameter also depends on the surfa
e 
overage andthe number of 
hains, the points from simulations varying number of 
hains,
ore radius, and 
hain length 
ollapse on the same 
urve, whi
h shows a powerlaw dependen
e on surfa
e 
overage. The power law is �(�) = ��� with � =1:42 � 0:03 and � = 1:04 � 0:02. The simulations with the shortest 
hains 
anbe observed to deviate from this behaviour, whi
h we attribute to the Danielsform fa
tor not being valid for su
h short 
hains. Previously we have analysedthe s
attering data using a self-
onsistent approa
h [44℄, where the single 
hains
attering, sampled using (9.12) during MC simulations, was used in numeratorand denominator in the RPA expression (9.13). �(�) was derived by equating(9.5) and (9.6) in the �rst minima of the pro�le s
attering where S
h(q) = 0,and a power law behaviour with � = 1:35 � 0:02 and � = 0:95 � 0:02 wasfound. This indi
ates that while �(�) shows a simple power law relation on�, the 
orresponding 
onstant and exponent shows a weak dependen
e on theparti
ular expressions used for the 
hain and pro�le s
attering.The forward s
attering due to density �u
tuations is related to the osmoti

ompressibility � through a �u
tuation dissipation theorem, whi
h states thatthe osmoti
 
ompressibility is inversely proportional to the q ! 0 limit of theFourier transform of the density �u
tuation 
orrelation fun
tion. For a polymersolution the observed s
attering is due to density �u
tuations, and as a resultit is easy to obtain the osmoti
 
ompressibility by extrapolating the observeds
attering to the q ! 0 limit. For a mi
ellar 
orona the s
attering at low qvalues is dominated by pro�le s
attering due to the average radial pro�le. Thusthe pro�le s
attering dominates the s
attering due to the density �u
tuations,making a simple extrapolation impossible, however, by modelling the pro�leand �u
tuation s
attering separately as we have done in this paper is is trivialto obtain the q ! 0 limit of the �u
tuation s
attering 
ontribution as �(�) =F�1RPA(q = 0) = 1 + �(�) just as for a polymer solution [24℄. The osmoti
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ompressibility is shown in �gure 8, the osmoti
 
ompressibility 
an be seen tofollow a universal dependen
e on the surfa
e 
overage ex
ept for high surfa
e
overages where deviations due to a dependen
e on the number of 
hains andsurfa
e 
urvature 
an be seen.9.6 Con
lusionsWe have presented Monte Carlo simulation results performed on the s
atteringfrom a mi
elle as fun
tion of number of 
hains, 
hain length, and 
ore radius.We have, furthermore, presented a novel empiri
al model expressions for thes
attering from blo
k 
opolymer mi
elle with a spheri
al 
ore and that in
ludesthe e�e
ts of ex
luded volume intera
tions. The 
orona s
attering is representedas a sum of s
attering 
ontributions due to the average radial density pro�le andthe density �u
tuations 
orrelations about this pro�le. We model the �u
tuation
ontribution to the s
attering as that of a dilute/semi-dilute polymer solution.The proposed model depends on the radius of gyration, an ex
luded volumeparameter, whi
h is proportional to the apparent se
ond virial 
oe�
ient, andan expression for the radial pro�le of the mi
ellar 
orona. To our knowledge,there is no theoreti
al expression available for the radial pro�le ex
ept in thehigh 
urvature limit. We used three empiri
al expressions for the 
orona pro�le,one with a box with a Gaussian tail and two maximum entropy estimates whereknowledge of the two or three �rst momenta was assumed. The model expres-sions for the 
orona s
attering and pro�le s
attering were simultaneously �ttedto the s
attering obtained dire
tly from the MC simulations. These �ts show anex
ellent agreement for low surfa
e 
overages � < 1 for all three pro�les, whilethe ME3 pro�le shows an ex
ellent agreement also for � > 1, where the Box-Gauss and the ME2 pro�le show signi�
ant deviations at high q values for the
orona s
attering. These deviations are 
aused by the fa
t that the BoxGaussand ME2 pro�les provide a poor represention of the a
tual 
orona pro�le. Thisis re�e
ted in the estimates of radius of gyration and the ex
luded volume pa-rameter by these two models, as these are estimated from the high q behaviourof the 
orona s
attering where the �u
tuation s
attering dominates. For � < 1all pro�les provides identi
al estimates for the radius of gyration and ex
ludedvolume parameter. Besides providing estimates for the radius of gyration andthe ex
luded volume parameter, the �ts also provide estimates for the radialpro�le, whi
h 
an be 
ompared to the a
tual radial pro�les obtained from theMC simulation.Pro�les obtained by �tting the simulated s
attering are in good agreementwith the pro�les obtained dire
tly from simulations, ex
ept for small deviations
lose to the 
ore. For � < 1 the three pro�les obtained from the �ts of thesimulated s
attering are very similar, however, at high surfa
e 
overages, theME3 pro�le yields a signi�
antly better estimate for the radial pro�le.The �ts yields estimates of the radius of gyration whi
h are in good agree-ment with the radius of gyration obtained dire
tly from simulations. Plottingthe ex
luded volume parameter against redu
ed surfa
e 
overage for simulationsvarying 
hain length, number of 
hains and 
ore radius shows that the results
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ommon 
urve 
orresponding to a power law behaviour.However, the 
oe�
ients and exponents are slightly di�erent from those we havepreviously obtained through a self-
onsistent analysis, where simulation resultsfor the single 
hain s
attering were used in the RPA expression for the 
oronas
attering, thus forming a 
omplete self-
onsistent expression for the 
oronas
attering. This suggests that the power law behaviour is sensitive to the modelexpressions used for �tting the s
attering.We have shown that the e�e
ts from 
hain 
onne
tivity and ex
luded vol-ume intera
tions between tethered 
hains on the s
attering of a mi
elle with aspheri
al 
ore 
an be des
ribed by a relatively simple model, where the 
oronais modelled as a dilute/semi-dilute solution with a parti
ular radial pro�le. Wenote that this method of in
luding 
onne
tivity and ex
luded volume intera
-tions e�e
ts in the s
attering from 
olloidal aggregates 
an be generalised togeometries su
h as mi
elles with ellipti
al and 
ylindri
al 
ores. The models ofthe s
attering from 
olloidal aggregates presented in the present paper allowsmore a

urate and detailed information to be obtained from the analysis of ex-perimental results. We are 
urrently applying the expressions in the analysisof small-angle neutron 
ontrast variation data and small-angle x-ray s
atter-ing data for mi
elles of polystyrene-polyisoprene in de
ane. The results will bepresented in a future arti
le.



9.7. APPENDIX 1119.7 AppendixThe real and imaginary parts of G(x; y) = exp(x2 � y2)Erf
(x + iy) 
an beseparated into real and imaginary parts using an in�nite series approximation[45℄ G(x; y) = ex2�y2Erf
(x)� e�y22�x 
os(2xy)� 2� P1n=1 e�n24 �y2n2+4x2 fn(x; y)+i(� e�y2 sin(2xy)2�x � 2� P1n=1 e�n24 �y2n2+4x2 gn(x; y)) ;where fn(x; y) = 2x� 2x 
osh(ny) 
os(2xy) + n sinh(ny) sin(2xy)gn(x; y) = 2x 
osh(ny) sin(2xy) + n sinh(ny) 
os(2xy) :Here Erf
(x) is the real 
omplimentary error fun
tion. An expression for itis given in Numeri
al Re
ipes [46℄. Evaluation of the two auxiliary fun
tions fnand gn 
an be optimised using the addition formulae in whi
h 
ase only 
osh(y)and sinh(y) need to be evaluated, and subsequent evaluations of 
osh(ny) andsinh(ny) require only a few simple arithmeti
 operations of pre
al
ulated 
on-stants.
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Figure 9.1: Corona s
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attering for simulations varying the 
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e 
overages � = 0:13; 0:72; and 2:10, respe
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Figure 9.3: Pro�le s
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Figure 9.5: Redu
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Figure 9.6: Redu
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124 CHAPTER 10. ARTICLE IVAnalyti
al 
al
ulations of s
attering formfa
tors of stars, bran
hed polymers and blo
k
opolymer mi
elles for 
hains with ex
ludedvolume intera
tionsCarsten Svaneborg and Jan Skov Pedersen*Condensed Matter Physi
s and Chemistry Department, Risø National Labora-tory, DK-4000 Roskilde, Denmark*Present address: Department of Chemistry, University of Aarhus, Langelands-gade 140, DK-8000 Aarhus C, DenmarkA general formalism is presented for s
attering of a
y
li
 polymer stru
tures, andexpressions for the form fa
tor of arbitrary bran
hed polymers are derived. In additionexpressions are give for the form and intermole
ular stru
ture fa
tor for mi
elles withan arbitrary 
ore geometry, and star polymers with arms 
onsisting of arbitrary blo
k
opolymers. Ex
luded volume intera
tions are in
luded on the level of a linear 
hainthrough the applied s
attering expressions. The results for 
opolymer stars are usedfor �tting s
attering data obtained by Monte Carlo simulations for triblo
k 
opolymerstars with f = 2; 3; and 6 with and without intera
tions.This is an in
omplete draft of an arti
le, however, the theory se
tion is
omplete and forms the majority of the arti
le. The draft arti
le will probably
onverted into two or three arti
les, and generalised to stru
tures that in
ludeloops. Citations in this arti
le refer to the thesis referen
e list.



10.1. INTRODUCTION 12510.1 Introdu
tionS
attering te
hniques, su
h as light s
attering, small-angle neutron or x-rays
attering (LS, SANS and SAXS, respe
tively) are ideally suited for probingthe stru
ture of 
olloidal suspensions [18℄. However, a prerequisite for the usefulappli
ation of s
attering methods is the availability of expressions for the formand stru
ture fa
tor, 
orresponding, respe
tively to various geometri
al modelsfor 
olloidal aggregates and to their intera
tions, as this is a requirement foran a

urate interpretation and modelling of experimental s
attering data, fromwhi
h parameters related to the stru
ture and intera
tion of 
olloidal aggregates
an be extra
ted in an reliable manner.10.2 TheoryThe s
attering from a solution of identi
al 
omposite parti
les su
h as mi
ellaraggregates or stru
tures su
h as bran
hed polymers 
onsists of two termsI(q) = F (q) +H(q):Here the �rst term is the form fa
tor, i.e. the Fourier transform of the pair-distan
e distribution fun
tion between s
atterers within the 
omposite parti
le,and the se
ond term is the Fourier transform of the pair-distan
e distributionfun
tion between s
atterers belonging to di�erent 
omposite parti
les. This isthe intermole
ular stru
ture fa
tor. By de�ning an apparent stru
ture fa
tor asSapp(q) = 1 + H(q)F (q) ;the total s
attering 
an be re
ast in the simple form asso
iated with the s
at-tering from dispersions of mono-disperse spheres.I(q) = F (q)Sapp(q):The normalised (F (q = 0) = 1) form fa
tor of a 
omposite parti
le is de�nedas F (q) =  Xk bk!�2*�����Xk �bkeiq�rk �����2+ :Here rk is a ve
tor des
ribing the lo
ation of the k'th s
atterer in the 
om-posite parti
le, whi
h has an ex
ess s
attering length �bk. The average is over allthe possible 
onformations and orientations of the 
omposite parti
le or stru
-ture. The 
omposite parti
le is assumed to 
onsist of a number of subunits whi
h
ould be sub
hains in bran
hed polymer stru
tures, blo
ks in blo
k 
opolymers,or 
orona and 
ore in the 
ase of mi
elles. In this 
aseF (q) =  Xk �k!�2*Xj;k �j�kAjk(q)+ ;



126 CHAPTER 10. ARTICLE IVwhere the interferen
e from pairs of sites in the j'th and k'th subunits isAjk(q) = (�j�k)�1  Xl Xi �bjl�bkieiq�(rjl�rki )! ;where jl and ki denote the subset of all the s
atterers 
ontained in the l'thand i'th subunit, respe
tively. The total ex
ess s
attering of the i'th subunitis �i = Pi�bki . Assuming that ea
h subunit has a referen
e point Ri, su
has the 
enter-of-mass of a solid parti
le, the end of a polymer 
hain, or theboundary between two adja
ent blo
ks in a 
opolymer, we 
an de�ne the formfa
tor amplitude of a subunit i asAi(q) =  Xi �bki!�1Xi �bkieiq�(rki�Ri):Using this de�nition the form fa
tor amplitude is normalised to unity in thelimit of small q values, and the s
attering from pairs of sites 
an be expressedas Ajk(q) = A�j (q)Ak(q)eiq�(Rj�Rk);where A�j denotes 
omplex 
onjugation of Aj . The form fa
tor 
an be expressedin terms of subunit form fa
tor amplitudes asF (q) / *Xj �2jA�jAj +Xj 6=k �j�kA�jAkeiq�(Rj�Rk)+ :If, for instan
e, subunits j and k are two distant blo
ks on a N -blo
k 
opoly-mer, then a unique path 
onsisting of steps from one blo
k boundary to thenext 
an be 
onstru
ted 
onne
ting the two referen
e points of the distant sub-parti
les. The ve
tor 
onne
ting the two referen
e points is nothing more thanthe sum of all the ve
tors representing the individual steps. Thus assuming ingeneral that for any pair of subunits j and k a path of njk � 0 steps exists,denote by Rijk the i'th step in that path, and de�ne R0jk = Rk and Rnjkjk = Rj ,the ve
tor 
onne
ting the two referen
e points 
an be written in terms of indi-vidual steps as Rj �Rk = njkXi=1 �Rijk �Ri�1jk � :In this 
ase the form fa
tor of the 
omposite parti
le isF (q) / *Xj �2jAjA�j +Xj 6=k �j�kA�jAk njkYi=1 eiq��Rijk�Ri�1jk �+ :At this stage no approximations have been made. However, if we assume thatwe 
an 
arry out the 
on�gurational and orientational average of the subunits



10.2. THEORY 127independently of ea
h other, whi
h 
orresponds to an assumption that the pair-distan
e distribution between s
attering sites on di�erent subunits 
an be fa
-torised into produ
ts of site-to-referen
e, referen
e-to-referen
e, and referen
e-to-site probabilities, we 
an identity the form fa
tor of the j'th subunit byFj(q) = DAjA�jE, whi
h is a real fun
tion, that only depends on the magni-tude of the q ve
tor due to the orientational average. If we furthermore assumethat the 
on�gurational and orientational average of the individual steps 
an be
arried out separately, we 
an de�ne the phase fa
tor of the i'th step betweensubunits j and k as 	ijk(q) = *eiq��Rijk�Ri�1jk �+ ;whi
h is the Fourier transform of the distan
e distribution of ea
h step. Forexample in the 
ase of a polymer 
onne
ting two subunits, the phase fa
tor isthe Fourier transform of the end-to-end distan
e distribution of the 
onne
tingblo
k. Subje
t to these assumptions the normalised form fa
tor [F (q = 0) = 1℄of the 
omposite parti
le isF (q) =  Xi �i!�28<:Xi �2i Fi + 2Xj<k �j�kAj  njkYi=1	ijk!Ak9=; :The expression for the form fa
tor of a single 
omposite parti
le resemblesthe s
attering expression for a solution of di�erent parti
les, where the produ
tof phase fa
tors plays the role of a partial stru
ture fa
tor between subunitsof the 
omposite parti
le. This is due to the somewhat arbitrary distin
tionbetween 
omposite parti
le and subunit.The Fourier transform of the pair-distan
e distribution between sites ondi�erent 
omposite parti
les 
an be derived through an analogous argument,assuming that the 
on�guration, orientation and lo
ation of di�erent parti
lesare un
orrelated [110℄. Assuming one of the referen
e points 
oin
ide with the
enter of mass of the 
omposite parti
le, then there exists a unique path ofn
k � 0 steps (n

 = 0) 
onne
ting the 
enter (referen
e point denoted by index�
�) to the k'th referen
e point, where the i'th step is denoted 	i
k. In this 
asethe inter-parti
le stru
ture fa
tor isH(q) =  Xi �i!�2(Xk �kAk  n
kYi=1	i
k!)2 (S

(q)� 1) ;where S

(q) denotes the 
enter-to-
enter stru
ture fa
tor of the 
omposite par-ti
les, whi
h has to be supplied by some other means, su
h as PRISM theoryusing an e�e
tive intera
tion potential between the 
omposite parti
les. Theterm in the 
urly parenthesis plays the role of the form fa
tor amplitude of theentire 
omposite parti
le as it 
an be identi�ed as the Fourier transform of theradial s
attering length distribution [110℄.The expressions for the form fa
tor and stru
ture fa
tor were derived assum-ing that di�erent 
omposite parti
les, as well as di�erent sub-parti
les within
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omposite parti
le, are un
orrelated. These approximations are valid at low
on
entrations of parti
les, and in 
ases where the sub-parti
les are not stronglyintera
ting, su
h as mi
ellar aggregates with a low surfa
e 
overage. It wasfurthermore assumed that subsequent steps between referen
e points were notorientationally 
orrelated, and that individual steps only depend on the radialdistan
e. These assumptions are valid for sub-parti
les 
onne
ted by �exible andlong semi-�exible 
hain mole
ules.The expressions for the form and stru
ture fa
tor are geometri
al statements
ontaining only information about the relative positions of sub-parti
les. Infor-mation about the pair distan
e distribution within a sub-parti
le is des
ribedthrough the form fa
tor of that sub-parti
le, while the form fa
tor amplitude
ontains information about the distan
e distribution relative to the referen
epoint, and the phase fa
tor 
ontains information about the distan
e distribu-tion between two referen
e points, su
h as the end-to-end distan
e distributionof the polymer 
hain 
onne
ting two sub-parti
les. Intera
tions between s
atter-ers within ea
h sub-parti
le is in
luded in this des
ription through the parti
ularequations used to des
ribe these three 
ontributions to the s
attering fun
tions.10.3 Subunits 
onsisting of 
hain mole
ulesFor a 
hain mole
ule we 
hose as referen
e point one of the ends. The three s
at-tering fun
tion 
ontributions: the phase fa
tor, form fa
tor amplitude, and formfa
tor, respe
tively, are the Fourier transforms of the end-to-end Pee, end-to-site Pes, and site-to-site Pss pair-distan
e probability distributions, respe
tively.These probability distributions are typi
ally given by the same fun
tion, thatdes
ribes the probability that two sites on the 
hain, that are separated by a
ontour length l along the 
hain, are lo
ated at a dire
t distan
e r from ea
hother. The s
attering fun
tions are de�ned as	(q; L) = Z dr4�r2 sin(qr)qr Pee(r; L); (10.1)A(q; L) = Z L0 dl 1L Z dr4�r2 sin(qr)qr Pes(r; l); (10.2)and F (q; L) = Z L0 dl2(L� l)L2 Z dr4�r2 sin(qr)qr Pss(r; l); (10.3)where L is the total 
ontour length of the 
hain. These integral expressions
an be re
ast into sums over the number of segments using the substitutionsL = bN and l = bn, where b is the Kuhn length, and N the total number ofsegments. The Kuhn length of a semi-�exible 
hain is the segment length of the
orresponding �exible 
hain, and thus it is a measure for the length s
ale belowwhi
h the 
hain e�e
tively be
omes a rigid rod. The Kuhn length of a �exible
hain is identi
al to the step length of the 
hain as the dire
tion of subsequentsteps are un
orrelated.



10.3. SUBUNITS CONSISTING OF CHAIN MOLECULES 129The most basi
 example is a randomly orientated in�nitely thin rigid rodwith length L. In this 
ase the end-to-end probability distribution is Pee(r; L) =Æ(L� r)=(4�r2). The rigid rod is spe
ial as the 
ontour length l and dire
t dis-tan
e r are degenerate parameters, and only the 
ontour length integral has tobe performed. The end-to-internal point and internal-to-internal point distribu-tions are both given by Pes(r; l) = Pss(r; l) = �(L � r)Æ(r � l)=(4�r2), whereÆ(r� l) takes 
are of the degenera
y. Here Æ(x) denotes the delta fun
tion, while�(x) denotes the step fun
tion. Using these distributions it is straight forwardto perform the integrations (10.1)-(10.3) and one obtains	rod(q; L) = sin(qL)qL ; Arod(q; L) = Si(qL)qL ;and Frod(q; L) = 2Si(qL)qL � 4(qL)2 sin2 �qL2 � ;where Si(x) = R x0 dy sin(y)=y is the Sin integral. The expression for the rod formfa
tor was previous derived by Neugebauer [111℄. For a �exible 
hain withoutex
luded volume intera
tions, all the pair distan
e distributions are given by aGaussian distribution P (r; l) = � 32�bl� 32 exp �32 r2bl!Based on the Gaussian distribution the integrals (10.1)-(10.3) 
an be 
arriedout. The result for the form fa
tor amplitude and form fa
tor has previously beengiven by Hammouda [108℄ and Debye [71℄. Using the abbreviation x = (qRg)2where R2g = bl=6, the results 
an be stated as	o(x) = exp(�x) AH(x) = 1� exp(�x)x and FD(x) = 2[exp(�x)� 1 + x℄x2 :Semi-�exible 
hains without ex
luded volume intera
tions are reasonablydes
ribed by the se
ond Daniels approximation [55, 58℄, whi
h is given byP (r; l) = � 32�bl�3=2  1� 5b8l + 2r2l2 � 3340 r4bl3! exp �3r22bl!The three s
attering fun
tions 
an immediately be obtained by integratingthis distribution, and they 
an be written as a perturbation to the expressionsfor �exible 
hains as follows	Daniels(x;Nseg) = 	o(x) + x2N �1� 1115x� e�x;ADaniels(x;Nseg) = AH(x) + 130N �4� 4e�x + 11xe�x� ;and



130 CHAPTER 10. ARTICLE IVFDaniels(x;Nseg) = FD(x) + 115N �4 + 7x � �11 + 7x� e�x� :Here N is the number of statisti
ally independent segments i.e. N =L=b.These expressions are valid when qb < 3:1 and l > 10b [52℄. The expression forthe form fa
tor and phase fa
tor was previously given in [58℄.For �exible 
hains with ex
luded volume intera
tions the end-to-end, end-to-internal site, and internal-to-internal site distributions are 
ommonly regardedas being best des
ribed by the des Cloizeaux distribution [70℄, whi
h has theform P (r; ro) = Br�do � rro�2+� exp �D� rro�Æ! ;where ro = rDR2xy=dE is the averaged site-to-site distan
e, for instan
e theend-to-end Ree, end-to-site Res, or site-to-site Rss average distan
e, and d is thespa
e dimensionality. For a �exible 
hain with ex
luded volume intera
tions thesite-to-site distan
e is related to the number of segments as DR2xyE = b2n2� =2(1+�)(1+2�)R2g , where n is the number of segments 
onne
ting the two sites, �the ex
luded volume length exponent, and Rg the radius of gyration of the 
hain.The two exponents Æ and � are given by Æ = 1=(1��) and � = (
�1)=�, where 
is the entropi
 exponent of an ex
luded volume 
hain. In the limit of long �exible
hains renormalization group theory estimates the exponents as � = 0:588 and
 = 1:1619 for d = 3 [68℄. The 
 exponent vary slightly depending on whetherone 
onsiders the end-to-end, end-to-internal site, or internal-to-internal pairdistan
e distribution. This is due to the in
reased degrees of freedom asso
iatedwith the end points 
ompared to an internal point [60, 64℄. B and D are nor-malisation 
onstants, and they are �xed by requiring that R10 ddrP (r; r0) = 1and R10 ddrP (r; ro)r2 = hr2xyi, where ddr = 2�d=2rd�1=(�[d=2℄)dr is the volumeof an in�nitesimal spheri
al shell in d-dimensions.Based on this distribution the phase fa
tor, form fa
tor amplitude, and formfa
tor 
an be 
al
ulated and expressed in terms of a series and an asymptoti
expansion valid at low and high q values, respe
tively. Details are given in theappendix. The results are summarised below using the following abbreviationsX = (1 + 2�)(1 + �)2 � (a)� (a+ b)(qRg)2; C = �[d=2℄� [a℄ ;a = 2 + d+ �Æ ; and b = 2Æ ;where �[x℄ is the Gamma fun
tion. Using these abbreviations the phase fa
torhas an series expansion	(q;Rg) = C 1Xn=0 �[a+ bn℄(�X)n�[d2 + n℄n! ;
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 expansion	(q;Rg) = CÆ2 1Xn=0 (�1)n�[a+nb ℄�[d2 � a+nb ℄n!X�a+nb :The form fa
tor amplitude has a series expansionA(q) = C 1Xn=0 �[a+ bn℄�[d2 + n℄(2�n+ 1) (�X)nn! ;and an asymptoti
 expansionA(q) = C�[ 12� ℄�[a� b2� ℄2�� hd2 � 12� i X� 12�+C 1Xn=0 (�1)n� �a+nb �[b� 2�(a+ n)℄� hd2 � a+nb in!X�a+nb :The form fa
tors based on the des Cloizeaux distribution was derived byUtiyama et al. [70, 112℄, and is stated here for the sake of 
ompleteness; theseries expression isF (q) = C 1Xn=0 � [a+ bn℄ (�X)n(1 + �n)(1 + 2�n)� hd2 + nin! ; (10.4)while the asymptoti
 expansion isF (q) = C� ha� b2� i� h 12� i�� hd2 � 12� i X� 12� � C� ha� b� i� h 1� i�� h Æ2 � 1� i X� 1�+Cb 1Xn=0 (�1)n� �a+nb �[b� 2�(a+ n)℄[b� �(a+ n)℄� hd2 � a+nb in!X�a+nb :The limit where 
hains are �exible and non-intera
ting is given by d = 3,� = 0:5, and 
 = 0. In this 
ase the des Cloizeaux distribution redu
e to aGaussian distribution, and the des Cloizeaux s
attering expressions redu
e tothe previously stated Gaussian expressions.All these sums 
an be written in the formS(qRg) = 1Xn=0 snan(qRg)�n = 1Xn=0 snebn+�nx where x = ln(qRg);and sn = sign(an) in whi
h 
ase the an 
onstants 
an be de�ned to be positive,e.g. if an = 0 then the 
hoi
e sn = 0 and an = 1 produ
e the same term. Asu�
ient number of 
onstants bn = ln(an) 
an be 
al
ulated in advan
e, allowingthe sums to be estimated with the required pre
ision, without a need for therepeated evaluation of Gamma fun
tions.
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luded volume intera
tionsWhen writing the Fourier transform of the pair-distan
e distribution as a prod-u
t of form fa
tor amplitudes and phase fa
tors, it was impli
itly assumed thatthe pair-distan
e distribution 
ould be fa
torised into a 
onvolution of indepen-dent site-to-referen
e, referen
e-to-referen
e, and referen
e-to-site probabilities.This is only true if the 
orrelations 
aused by intera
tions between subunits 
anbe negle
ted. In the 
ase where the same probability distribution des
ribes anentire linear 
hain 
onsisting of several blo
ks, the interferen
e term 
an be 
al-
ulated exa
tly. When assuming that the same pair-distribution des
ribes theentire 
hain, the interferen
e between two distant di�erent blo
ks j and k on alinear 
hain, separated by a 
ontour length of Lik, is given by the interferen
eis given byAjk(q;Lj ; Ljk; Lk) = Z Lj0 dljLj Z Lk0 dlkLk Z 10 dr4�r2 sin(qr)qr Pss(r; lj + Ljk + lk);(10.5)where Pss is the site-to-site probability distribution. For a Gaussian distributionAjk(q;Lj ; Ljk; Lk) = AH(q; Lj)	o(q; Ljk)AH(q; Lk) where the form fa
tor am-plitudes and phase fa
tor was presented in the previous se
tion. For a ex
ludedvolume 
hain the des Cloizeaux distribution is used, and a series expansion ofthe phase fa
tor and performing the 
ontour length integrations, the interfer-en
e term 
an be expressed, using the radius of gyration of the two blo
ks Rg;jand Rg;k and of the inter-
onne
ting 
hain segment Rg;jk, asAjk(q;Rg;j ; Rg;jk; Rg;k) = C2 (f [Rg;2℄ + f [Rg;123℄� f [Rg;12℄� f [Rg;23℄) ;with the radius of gyration abbreviationsRg;12 = �R 1�g;j +R 1�g;jk�� ; Rg;23 = �R 1�g;jk +R 1�g;k�� ;and Rg;123 = �R 1�g;j +R 1�g;jk +R 1�g;k�� ;and the fun
tion f is given byf(R) =  R2Rg;iRg;k! 1v g ��[a℄(1 + �)(1 + 2�)2�[a+ b℄ q2R2� ;where g has a series expansiong(y) = 1Xn=0 �[a+ bn℄(�y)n(1 + �n)(1 + 2�n)�[d2 + n℄n!and an asymptoti
 expansiong(y) = �[a� b2� ℄�[ 12� ℄y� 12���[d2 � 12� ℄ � �[a� b� ℄�[ 1� ℄y� 1���[d2 � 1� ℄



10.5. ARBITRARY LINEAR BLOCK COPOLYMER 133+ 1Xn=0 b(�1)n�[a+nb ℄y�a+nb[b� 2(a + n)�℄[b� (a+ n)�℄�[d2 � a+nb ℄n! :In pra
ti
e the 
rossover between the series and asymptoti
 expansion shouldbe lo
ated around y = 15.10.5 Arbitrary linear blo
k 
opolymerThe s
attering from a linear 
opolymer 
onsisting of an arbitrary number ofblo
ks, intera
ting with ex
luded volume intera
tions is given byFlin(q) =Xi �2i Fi(q; Li) + 2Xj<k �j�kAjk(q; Ljk);here Li is the 
ontour length of the i'th blo
k, while Ljk = Pk�1i=j+1 Li is the
ontour length of all the blo
ks between the i'th and j'th blo
k. Note that it hasbeen assumed that the pair-distan
e distribution between blo
ks is still givenby the same des Cloizeaux distribution.10.6 Arbitrary bran
hed polymerFor an arbitrary bran
hed polymer there are two 
ontributions to the totals
attering: One from the form fa
tor of individual sub-
hains yielding an Fifor ea
h sub
hain, and another from interferen
e terms between all pairs ofdi�erent sub-
hains. It is assumed that a unique path 
onsisting of steps fromone bran
h to the next bran
h exists, whi
h 
onne
t any two sub-
hains inan arbitrary bran
hed polymer. We then denote the i'th step from bran
h tobran
h point between the j'th and k'th polymer segment out of njk � 0 stepsby 	(q; Lijk), where Lijk is the 
ontour length of the step along the 
hain. Hereit has been assumed that all sub-
hains have the same Kuhn length, su
h thatthe phase fa
tor is only a fun
tion of the 
ontour length of a sub-
hain. It is atrivial extension to in
lude di�erent Kuhn lengths of the various segments. Inthis 
ase the pair distan
e distribution between any two sites on two di�erentsub-
hains 
onsists of a step from the site on the j'th sub
hain to the referen
epoint (yielding a fa
tor Aj), ea
h of the njk steps the path 
onne
ting the twosites yields a fa
tor, whi
h for the i'th step is 	(q; Lijk), and a step from thereferen
e point to a site on the k'th 
hain (yielding a fa
tor Ak). The form fa
torof the bran
hed polymer is the sum of the form fa
tors of the individual sub-
hains, and the sum of all su
h possible paths between sites on 
hains weightedby the respe
tive s
attering lengths.Fbran
h(q) =  Xi �i!�20�Xi �2i Fi(q) + 2Xj<k �j�kAj(q)Ak(q) njkYi=1	(q; Lijk)1AThis expression have previously been given in the limit of Gaussian 
hains[19℄.
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elles with an arbitrary 
oreThe form fa
tor of a mi
elle with an arbitrary 
ore geometry 
onsists of 
ontri-butions from s
attering between the following sub-units: 
ore-
ore, 
ore-
hain,
hain-
hain on the same 
hain, and 
hain-
hain between two di�erent 
hains.The referen
e point of the 
ore is the 
enter of mass, while referen
e point forthe tethered 
hains is the tethering point, i.e. the referen
e point of the 
hainsis the entire 
ore surfa
e. Index �
h� denotes 
hains, �
o� 
ore and �s� denotesthe surfa
e.The pair distan
e between a s
atterer in the 
ore and a 
hain is given by thestep from the 
ore s
atterer to the 
ore referen
e point (A
o), a step from the 
orereferen
e point to any tethering point on the surfa
e (	s), and from a tetheringpoint to any site on a 
hain (A
h). However, as the 
ore and 
ore surfa
e are�xed relative to ea
h other the orientational average has to be performed on theprodu
t of the respe
tive steps yielding a term proportional to hA
o	siA
h forthe 
ore-
hain 
ontribution to the total s
attering. The pair distan
e distributionbetween two sites on two di�erent 
hains 
an be regarded as a step from a siteon one 
hain to the tethering point of that 
hain (A
h), the step from onetethering point on the surfa
e to another tethering point (Fs), and a step fromthat tethering point to a site on the other 
hain (A
h), whi
h yields a termA
hFsA
h for the 
hain-
hain s
attering between di�erent 
hains. The s
attering
ontribution from a pair of s
atterers within the same 
hain is proportional tothe 
hain form fa
tor F
h. �
h is the total s
attering length of the 
orona and
ontains all sites within the 
orona, however, intra-
hain s
attering 
ontributes�2
h=N while the inter-
hain s
attering 
ontributes �2
h(N � 1)=N to the total
orona s
attering length. Taking 
are to introdu
e all the numeri
al prefa
torsthe form fa
tor of a mi
elle be
omesFmi
elle(q) = 1(�
o + �
h)2 ��2
oF
o + 2�
o�
h hA
o	siA
h+ 1N �2
hF
h + N � 1N �2
hA2
hFs� :Assuming that the 
enter of mass of the 
ore 
oin
ides with the 
enter ofmass of the mi
elle, we 
an also give the intermole
ular stru
ture fa
tor of themi
elles. This 
onsists of the pair distan
e distribution from a s
atterer in the
ore to the 
enter of the 
ore, yielding a term A
o, and a 
ore-
hain 
ontributionfrom the 
ore 
enter to any site on any 
hain. This 
onsists of a step from the
enter of the 
ore to the surfa
e (	s), and a step from the tethering point toany site on a 
hain (A
h), yielding a term 	sA
h. The result when the ex
esss
attering lengths are in
luded be
omes [110℄Hmi
elle(q) = 1(�
o + �
h)2 (�
oA
o + �
hA
h	s)2 [S

(q)� 1℄ :In the spe
ial 
ase where the 
ore is spheri
al the phase and form fa
tor ofsurfa
e, and the form fa
tor amplitude and form fa
tor of the 
ore, respe
tively,are given by
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o) = sin(qR
o)qR
o Fs(qR
o) = 	2s;and A
o = 3[sin(qR
o)� qR
o 
os(qR
o)℄(qR
o)3 F
o = A2
o;where R
o denotes the radius of the 
ore. Inserting these expression in the mi
el-lar form fa
tor will reprodu
e the model of Pedersen and Gerstenberg [106, 107℄.As 
orrelations between 
hains and the 
ore have been negle
ted 
hains are ableto enter the 
ore region, however, 
ore repulsion 
an be mimi
ked by in
reas-ing the radius in the surfa
e expressions relative to the radius used in the 
oreexpressions.10.8 Stars of arbitrary blo
k 
opolymersThe form fa
tor of a star polymer made of blo
k 
opolymers 
ontains three
ontributions: The form fa
tor of ea
h blo
k, the interferen
e between two blo
kson the same 
hain, and the interferen
e between two blo
ks on two di�erent
hains. We denote the form fa
tor amplitude of the j'th blo
k on the i'th 
hain asA(i)j , and the 
orresponding phase fa
tor as 	ij. The interferen
e term des
ribingthe pair distan
e between two sites on blo
k j and l, respe
tively, on the i'th
hain 
onsists of a jump from the site to the blo
k boundary 
losest to the othersite (providing a A(i)j fa
tor), then a number of steps from blo
k boundary toboundary along the 
hain, ea
h step providing a phase fa
tor until the referen
epoint l is rea
hed yielding Ql�1�=j+1	(i)� . A step from the referen
e point to thesite on the blo
k provides a form fa
tor amplitude A(i)l .Similarly the interferen
e term between two sites j and l on two di�erent
hains i and k 
onsists of a jump from the site to the blo
k boundary 
losestto the star 
enter (providing a fa
tor A(i)j ), then j � 1 steps between blo
kboundaries towards the 
enter providing a fa
tor Qj�l�=1	(i)� , and a number ofsteps from the 
enter to the l'th blo
k boundary on the k'th 
hain providingQl�1�=1	(k)� , and a single step from the blo
k boundary to the site providing theform fa
tor amplitude A(k)l .Let f be the number of arms, and ni the number of segments on 
hain i.Then, negle
ting the 
orrelations introdu
ed by steri
 intera
tions between thedi�erent arms and di�erent blo
ks, the normalised [Fstar(q = 0) = 1℄ form fa
torof the star 
onsists of the sum of all su
h paths 
onne
ting any two sites:Fstar(q) = 0� fXi=1 niXj=1�(i)j 1A�20BBBBBB� fXi=1 niXj=1 ��(i)j �F (i)j + 2 fXi=1 niXj; l = 1j < l �(i)j �(i)l A(i)j A(i)l l�1Y�=j+1	(i)�
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+2 fXi; k = 1i < k niXj=1 nkXl=1 �(i)j �(k)l A(i)j A(k)l j�1Y�=1	(i)� l�1Y�=1	(k)� 1CCCCCCA : (10.6)Here F (i)j is the form fa
tor, A(i)j is the 
hain form fa
tor amplitude, 	(i)j isthe phase fa
tor, and �(i)j is the ex
ess segmental s
attering length of the j'thblo
k on the i'th 
hain. Rg;ij denotes the radius of gyration of blo
k j on thei'th 
hain. We use a notation where Ql�=j 	i� = 1 if l < j. The 
orrespondingnormalised stru
ture fa
tor is given by the sum of all paths 
onne
ting any siteon any 
hain to the 
enter and it isHstar(q) = 0� fXi=1 niXj=1�ij1A�20� fXi=1 niXj=1�ijAij j�1Y�=1	i�1A2 (S

(q)� 1) :10.9 Monte Carlo simulationsMonte Carlo simulations of the s
attering from stars of semi-�exible triblo
k
opolymers with and without ex
luded volume intera
tions have been performed.The 
hains on the stars were modelled by a dis
rete Kratky-Porod model withL=b = 100 or 400 segments per arm. Ex
luded volume intera
tions were in-
luded by pla
ing six hard-spheres with radius � = 0:1b per Kuhn length ofthe 
hain. This is a 
hoi
e whi
h is known to reprodu
e the binary 
luster in-tergral of polystyrene in a good solvent [93℄. The s
attering at homogeneous
ontrast (�1 = �2 = �3 = 1), as well as the s
attering from the inner (�1 = 1,�2 = �3 = 0), middle (�2 = 1, �1 = �3 = 0), and outer (�3 = 1, �1 = �2 = 0)s
attering have been obtained.10.10 Results and Dis
ussionIn the spe
ial 
ase of a triblo
k 
opolymer star with f arms eq. (10.6) redu
e toFstar(q) = f�1 (�1 + �2 + �3)�2 ��21F1 + �22F2 + �23F3+2 (�1�2A1A2 + �2�3A2A3 + �1�3A1A3	2)+(f � 1) ��21A21 + �22A22	21 + �23A23	21	22+2 ��1�2A1A2	1 + �2�3A2A3	21	2 + �1�3A1A3	1	2��	 ;This expression was �tted simultaneously to the simulation data using thefour s
attering 
ontrasts 
al
ulated with the Daniels expressions for the formfa
tors, form fa
tor amplitudes, and phase fa
tors and �tting the radius of gyra-tion of ea
h blo
k, as well as the number statisti
al independent segments in therange of qb from 0:1 to 10. The �ts shown in �gures 10.1 - 10.3 are in ex
ellentagreement with the simulation results, and the redu
ed �2red < 1:2 for all �ts.The form fa
tor of triblo
k 
opolymer stars in
luding ex
luded volume e�e
tson the linear level is given by



10.10. RESULTS AND DISCUSSION 137F exvolstar (q) = f�1 (�1 + �2 + �3)�2 ��21F1 + �22F2 + �23F3+2 [�1�2A(L1; 0; L2) + �2�3A(L2; 0; L3) + �1�3A(L1; L2; L3)℄+(f � 1) ��21A(L1; 0; L1) + �22A(L2; 2L1; L2) + �23A(L3; 2L1 + 2L2; L3)+2 (�1�2A(L1; L1; L2) + �2�3A(L2; 2L1 + L2; L3) + �1�3A(L1; L1 + L2; L3))℄g :(10.7)Here the form fa
tor F and form fa
tor amplitude A is given by eq. (10.4) and(10.5), respe
tively. Ex
luded volume intera
tions within ea
h arm are a

ountedfor in this expression, while the ex
luded volume intera
tions between armsignore the presen
e of the f � 2 arms. Hen
e for f = 2 eq. (10.7) in
ludesthe full ex
luded volume e�e
ts. Note the middle blo
k has twi
e the lengthof the other blo
ks. The form fa
tor has been �tted to simulation results forthe s
attering from a two-arm star with ex
luded volume intera
tions and semi-�exibility. Fit parameters were the radius of gyration of the three blo
ks, andthe 
riti
al exponents � and 
 as well as four �at ba
kgrounds that is added tothe s
attering, thus e�e
tive exponents averaged over the entire star is obtained.These ba
kgrounds has the e�e
t of mimi
king the e�e
ts of semi-�exibility onthe s
attering. The �t has �2red = 2:7 and is shown on �gure 10.4.The �t yields the exponents � = 0:583 and 
 = 0:449. Renormalizationgroup theory [68℄ yields � = 0:588 and 
 = 1:1619 in the long �exible 
hainlimit.



138 CHAPTER 10. ARTICLE IV10.11 AppendixThe des Cloizeaux distribution [64, 60℄ isP (r; r0) = Bro � rro�2+� exp �D� rro�Æ!with ro = shR2ssid = sb2n2�d = Rgs2(1 + 2�)(1 + �)d ;where b is the Kuhn length of the 
hain and n the number of segments, whileRg is the radius of gyration. �, 
 are the 
riti
al length and entropy exponent,respe
tively, whi
h for d = 3 is estimated to be � = 0:588 and 
 = 1:1619 fromRGT theory [68℄ for in�nite long �exible 
hains. The Gaussian limit is d = 3,� = 0:5, and 
 = 0 in this limit r2o=2 = b2n=6 = R2gB and D are normalisation 
onstants, derived from the zeroth and se
ondmomenta of the des Cloizeaux distribution:B = Æ� �d2�Da2�d=2�(a) D = �1d � (a+ b)� (a) �1=b ;where the following abbreviations are used: Æ = 1=(1��) and � = (
�1)=�. Weuse the method and notation used by Förster and Burger[70℄. S
attering froma distribution is in arbitrary dimension given by	(q; ro) = Z 10 P (r; ro)0F1(d2 ;�(qr)24 )2� d2 rd�1�[d=2℄ dr:For d = 3; this redu
es to	(q; ro) = Z 10 P (r)sin qrqr 4�r2dr:The de�nition of the oF1 hyper geometri
 fun
tion is0F1(b; z) = 1Xn=0 �[b℄�[b+ n℄ znn! :Inserting the expression into the integral and integrating produ
es the seriesexpansion of the phase fa
tor:	(q;Rg) = 2�d=2BÆDa 1Xn=0 �[a+ bn℄�[d2 + n℄n! ��(1 + 2�)(1 + �)2dD2=Æ (qRg)2�nWe 
an obtain the asymptoti
 expansion by rewriting the sum as	(q;X) = C 1Xn=0 �[a+ bn℄�[d=2 + n℄ (�x)nn! (10.8)



10.11. APPENDIX 139where the following abbreviations were useda = 2 + d+ �Æ b = 2Æ x = (1 + 2�)(1 + �)2dDb (qRg)2 C = �[d=2℄� [a℄ :Note that a series 
an be expressed as a 
omplex integral as1Xn=0 a(n)(�x)nn! = � Z 
+i1
�i1 dz2�ia(z)�[�z℄xz ;where the integration path is 
hosen to in
lude all poles of the Gamma fun
tion,whi
h are lo
ated at zero and all positive (real) integers. The asymptoti
 seriesexpansion is obtained by summing the residues of all poles for Re(z) < 0, i.e.the poles of the prefa
tor a(z) = �[a+ bz℄�[d=2 + z℄ ;whi
h are lo
ated at a + bz = �m, where m is zero or a positive integer. Theresidue of the integrand in the m'th pole isRes[a(s)�[�s℄xs; s = �(a+m)=b℄ = �[m+ab ℄x�m+abb�[�m+ab + d2 ℄ ;whi
h yields the asymptoti
 series as	(q;X) = Cb 1Xm=0 (�1)m�[m+ab ℄x�m+ab�[d2 � m+ab ℄m! :The form fa
tor is obtained by integrating the phase fa
tor asA(q) = Z N0 dnN 	(q; ro(n))Inserting the sum, using r2o(n) = b2n2�=d, and inter
hanging the order ofthe sum and the integration, the integration 
an be 
arried out term by termyielding the series expansion of the form fa
tor amplitude asA(q) = C 1Xn=0 �[2+d+�+2nÆ ℄�[d2 + n℄(2�n+ 1)n! ��(1 + 2�)(1 + �)2dD2=Æ q2R2g�n :The asymptoti
 expansion is derived analogous to that of the phase fa
tor.Simple poles are lo
ated at z = �(a+m)=b and z = �1=(2�) and summationof the 
orresponding residues yields the asymptoti
 expansionA(q;N) = C 0��[ 12� ℄�[a� b2� ℄x� 12�2�� h d2 � 12� i + 1Xm=0 (�1)m� �a+mb �x�a+mbm!(b� 2(a+m)�)� hd2 � m+ab i1A
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Figure 10.1: Triblo
k 
opolymer star (two arms) s
attering for semi-�exible
hains without ex
luded volume intera
tions (L=b = 100). S
attering for bulk
ontrast, inner blo
k, middle blo
k, and outer blo
k (from bottom to top usingboxes), �t (line).
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Figure 10.2: Triblo
k 
opolymer star (3 arms) s
attering for semi-�exible 
hainswithout ex
luded volume intera
tions (L=b = 100). S
attering for bulk 
ontrast,inner blo
k, middle blo
k, and outer blo
k (from bottom to top using boxes),�t (line).
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Figure 10.3: Triblo
k 
opolymer star (6 arms) s
attering for semi-�exible 
hainswithout ex
luded volume intera
tions (L=b = 100). S
attering for bulk 
ontrast,inner blo
k, middle blo
k, and outer blo
k (from bottom to top using boxes),�t (line).
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Figure 10.4: Triblo
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opolymer star (2 arms) s
attering for semi-�exible 
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luded volume intera
tions (L=b = 400). S
attering for bulk 
ontrast,inner blo
k, middle blo
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k (from bottom to top using boxes),�t (line).
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Chapter 11Con
lusionThe aim of the work presented in this thesis was to investigate the s
atteringfrom diblo
k 
opolymer mi
elles with a spheri
al 
ore using Monte Carlo (MC)simulations. The purpose of the simulations was to formulate an expressionfor the mi
ellar form fa
tor, that 
an be used when analysing experimentals
attering data. Using the solution pro�le s
attering to represent the 
orona formfa
tor su
h an expression was formulated, and the expression was validated usingself-
onsistent analysis based on Monte Carlo simulation data in arti
le II. TheseMC simulations were performed varying the number of 
hains, 
hain lengthand 
ore radius within the experimentally available range of surfa
e 
overagesfor diblo
k 
opolymer mi
elles. The 
orona form fa
tor was obtained dire
tlyfrom simulation results for the intra-
hain and inter-
hain s
attering, while thesolution pro�le s
attering was derived based on the simulation s
attering resultsfor the intra-
hain and 
orona form fa
tor amplitude. Comparing the two resultsfor the 
orona form fa
tor shows an ex
ellent agreement for all simulation data,even at the highest surfa
e 
overages. This demonstrates that the s
attering fromthe mi
ellar 
orona 
an be regarded as being that of a quasi two dimensionaldilute/semi-dilute polymer solution, a solution that is 
on�ned to the mi
ellar
orona region given by a radial pro�le with a width 
omparable to the 
hainradius of gyration. The 
omparison shows that the polymer solution s
attering
an be a

urately approximated by an RPA approximation.Arti
le I investigated the validity of the model due to Pedersen and Gersten-berg. This model in
ludes e�e
ts due to single 
hain s
attering and approximatesthe e�e
ts of 
ore expulsion, but it negle
ts ex
luded volume intera
tions withinthe 
orona. The 
on
lusion was that this model provides reasonable a

urateestimates of the radius of gyration and the 
orona 
enter of mass distan
e fromthe 
ore 
enter for surfa
e 
overages less than unity, while deviations in
reasedfor in
reasing surfa
e 
overages above unity. The solution pro�le expression forthe 
orona form fa
tor in
ludes ex
luded volume intera
tions as well as 
oreexpulsion, and the expression provides ex
ellent �ts to the observed s
atteringwhi
h was shown in arti
le III. The estimated parameters have been 
omparedto the same parameters obtained dire
tly from the MC simulation, and it wasshown that very a

urate estimates for the radius of gyration and the shape ofthe radial pro�le are obtained for all simulations. This has validated the pro-145



146 CHAPTER 11. CONCLUSIONposed solution pro�le expression for the 
orona s
attering, not just as being agood des
ription of the 
orona form fa
tor, but also as an ex
ellent tool forestimating physi
al parameters from the experimental s
attering data.The solution pro�le 
on
ept also allows s
attering due to the average ra-dial pro�le and s
attering due to density �u
tuations within the pro�le to beseparated, even though the s
attering due to the radial pro�le is the dominant
ontribution to the 
orona form fa
tor for low q values. This enables the s
at-tering due to density �u
tuations in the forward dire
tion to be obtained usingboth an model �tting approa
h and a self-
onsistent approa
h. This has enabledthe extra
tion of the 
orona 
ompressibility and apparent se
ond virial 
oe�-
ient due to the 
hain intera
tions within the mi
ellar 
orona from the simulateds
attering.The osmoti
 
ompressibility has a universal dependen
e on surfa
e 
over-age, with small deviations at very high surfa
e 
overages, whi
h we attribute toa weak dependen
e on surfa
e 
urvature and number of 
hains. The apparentse
ond virial 
oe�
ient for all simulations approximately 
ollapses onto a 
om-mon power law relation, and the power laws obtained from the self-
onsistentanalysis and model �tting approa
hes are in reasonable agreement. The osmoti

ompressibility and apparent se
ond virial 
oe�
ient have an dependen
e onredu
ed surfa
e 
overage analogous that of an ordinary polymer solution on theredu
ed 
on
entration 
=
�, hen
e validating the 
laim that the mi
ellar 
orona
an be regarded as a quasi-two dimensional polymer solution.Arti
le IV provides a way of 
al
ulating the form fa
tor and stru
ture fa
torof polymer stru
tures su
h as star 
opolymers, bran
hed polymers, 
opolymermi
elles, and other stru
tures that 
an be regarded as 
onsisting of a number of
onne
ted subunits. General expressions are presented for the form and stru
-ture fa
tor for the polymer stru
tures at level of approximation of the model ofPedersen and Gerstenberg, i.e. intera
tions between subunits are negle
ted, how-ever, it is shown how to in
lude ex
luded volume intera
tions between subunitson a linear 
hain, su
h as the e�e
ts of ex
luded volume intera
tions betweenblo
ks in a 
opolymer. The formalism requires the knowledge of phase fa
tors,form fa
tor amplitudes, and form fa
tors for all the subunits, for a polymer.These are the Fourier transforms of the end-to-end, end-to-internal site, andinternal-to-internal site distan
e distributions. In the arti
le, results are pre-sented or reviewed for subunits 
onsisting of �exible and semi-�exible 
hains, aswell as 
hains with ex
luded volume intera
tions.Expressions without ex
luded volume intera
tions have been �tted simul-taneously to four 
ontrasts of a triblo
k 
opolymer star with two, three andsix arms, respe
tively, and the �ts are in ex
ellent agreement with the simula-tion results. An expression with ex
luded volume intera
tions has, furthermore,been �tted to a triblo
k 
opolymer star with two arms, e.g. a linear pentablo
k
opolymer, and this �t also shows ex
ellent agreementThe arti
les and the present thesis des
ribe some new simulation te
hniques.The 
hain 
reation te
hnique using a virtual zeroth bond have lead to a 
on-siderable simpli�
ation of 
reating a 
hain with a parti
ular 
on�guration, andhas signi�
antly simpli�ed the 
omputational task of 
orre
ting vertex positionsfor numeri
al errors introdu
ed by the repeated pivot moves 
ompared to the
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hnique due to Stellman and Gans [102℄. A hybrid Fast-Fourier-Transform al-gorithm for sampling the s
attering on a logarithmi
ally distributed q s
ale hasbeen presented, whi
h greatly redu
es the time required for sampling the partials
attering 
ontributions.A prerequisite for an a

urate analysis and interpretation of experimentaldata is the existen
e of advan
ed models. This thesis and the arti
les in
ludedhave shown that a relatively simple expression exists for the s
attering fromdiblo
k 
opolymer mi
elles. And a general formalism for 
al
ulating form fa
torsof polymer mi
elles and bran
hed polymer stru
tures has been presented. It isthe author's hope that the results presented in the report will be applied forinterpreting experimental s
attering results, and provide not only informationbut also knowledge about the stru
ture of 
omplex �uids.11.1 Suggestions for future workThe 
hapter summary of arti
les ended by proposing a generalisation of thes
attering from a mi
elle with an arbitrary 
ore geometry by re
asting the
orona s
attering expression using a solution pro�le s
attering term. However,this expression has yet to be 
he
ked using simulation results. Simulations ofthe s
attering from mi
elles with end-
apped 
ylindri
al 
ores have already beenperformed, but has yet to be analysed. It would also be interesting to performsimulations with surfa
e 
overages in the brush regime, to 
ompare Monte Carloresults with the many theories that exists in this limit, and, for instan
e, to in-vestigate the 
ompressibility dependen
e on surfa
e 
urvature and number of
hains.All the simulations in this thesis have been performed for an athermal sol-vent. This is su�
ient to provide a

urate expressions for the s
attering frompolymers in a good solvent, however, it would be interesting to in
lude an 
hain-
hain intera
tion potential su
h that, for instan
e, the e�e
ts of the s
reenedele
trostati
 intera
tions polyele
trolyte 
orona 
ould be investigated.The RPA approximation in the solution pro�le s
attering 
ontribution worksvery well within the range of surfa
e 
overages simulated, but a full PRISMtreatment of the mi
ellar 
orona should be possible, and this would yield thedire
t 
orrelation fun
tion 
(q) as fun
tion of number of 
hains, 
hain length, and
ore radius. This would provide an expression for the solution pro�le s
atteringwhi
h does not rely on the RPA approximation.The e�e
ts due to the stru
ture fa
tor has yet to be explored. In the 
hapterwith the summary of arti
les an equation for the stru
ture fa
tor using thesolution pro�le expression was proposed for a mi
ellar solution, however, the
enter-to-
enter stru
ture fa
tor S

(q) is assumed to be given in this expression.However, this 
enter-to-
enter stru
ture fa
tor should also be amenable to aPRISM treatment for instan
e by de�ning an e�e
tive mi
elle-mi
elle potentialbased on the degree of overlap of the two mi
ellar 
oronas, whi
h in a mean �eldapproa
h is simply provided by the overlap of the radial monomer distributionsfor two mi
elles.In arti
le three maximum entropy (ME) estimate for the radial pro�le was



148 CHAPTER 11. CONCLUSIONproposed based on knowledge of the �rst two/three moments of the pro�le.These parameters were subsequently obtained by �tting the 
orona form fa
-tor amplitude based on the ME pro�le to the simulated s
attering. It shouldbe possible to formulate a dire
t maximum entropy expression that providesthe 
orona pro�le by maximising the entropy subje
t to the 
onstraints posedby the known s
attering data without the assumption that the pro�le 
an berepresented by a parti
ular fun
tional expression.The formalism for 
al
ulating form and stru
ture fa
tors, whi
h generallynegle
ts ex
luded volume intera
tions, has been extended to in
lude ex
ludedvolume intera
tions on the level of linear mole
ules. An interesting problemwould be how to introdu
e 
orrelations due to intera
tions for instan
e betweenthe arms of star polymers. Renormalization group theory 
al
ulations for thes
attering from star polymers with ex
luded volume intera
tions exist, and simi-lar te
hniques would probably be required for the general problem of introdu
ingintera
tions. An alternative approa
h would be to add some general expansionthat approximate the e�e
ts due to ex
luded volume intera
tions, where theexpansion parameters 
ould be obtained by �tting numeri
al simulations. Thiswould provide a general method for parameterising Monte Carlo s
attering re-sults from polymer stru
tures.
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